Alexiades AV, Encalada AC, Lessmann J, Guayasamin JM (2019) Spatial prediction of stream physicochemical parameters for the Napo River Basin. Ecuador J Freshw Ecol 34(1):247–261
CAS
Article
Google Scholar
Altenburger R, Ait-aissa S, Antczak P, Backhaus T, Barceló D, Seiler T, Brion F, Busch W, Chipman K, López M, Alda D, Aragão GD, Escher BI, Falciani F, Faust M, Focks A, Hilscherova K, Hollender J, Hollert H, Jäger F, Jahnke A, Kortenkamp A, Krauss M, Lemkine GF, Munthe J, Neumann S, Schymanski EL, Scrimshaw M, Segner H, Slobodnik J, Smedes F, Kughathas S, Teodorovic I, Tindall AJ, Tollefsen KE, Walz K-H, Williams TD, Van den Brink PJ, van Gils J, Vrana B, Zhang X, Brack W (2015) Future water quality monitoring—Adapting tools to deal with mixtures of pollutants in water resource management. Sci Total Environ 512–513:540–551. https://doi.org/10.1016/j.scitotenv.2014.12.057
CAS
Article
Google Scholar
APHA (1998) Standard methods for the examination of water and wastewater. American Public Health Association, 25th edn, pp. 1–101. Washington, DC, Centennial. ISBN 9780875532356.
Backhaus T, Brack W, Van den Brink PJ, Deutschmann B, Hollert H, Posthuma L, Segner H, Seiler TB, Teodorovic I, Focks A (2019) Assessing the ecological impact of chemical pollution on aquatic ecosystems requires the systematic exploration and evaluation of four lines of evidence. Environ Sci Eur. https://doi.org/10.1186/s12302-019-0276-z
Article
Google Scholar
Batsaikhan B, Kwon J-S, Kim K-H, Lee Y-J, Lee J-H, Badarch M, Yun S-T (2017) Hydrochemical evaluation of the influences of mining activities on river water chemistry in central northern Mongolia. Environ Sci Pollut Res 24(2):2019–2034. https://doi.org/10.1007/s11356-016-7895-3
CAS
Article
Google Scholar
Banerjee T, Srivastava RK (2009) Application of water quality index for assessment of surface water quality surrounding integrated industrial estate-Pantnagar Tirthankar Banerjee and Rajeev Kumar Srivastava. 2041–2054. https://doi.org/10.2166/wst.2009.537
Belz RG, Patama M, Sinkkonen A (2018) Low doses of six toxicants change plant size distribution in dense populations of Lactuca sativa. Sci Total Environ 631:510–523
Article
Google Scholar
Burton GA Jr (2002) Sediment quality criteria in use around the world. Limnology 3(2):65–76
CAS
Article
Google Scholar
Canadian Council of Ministers of the Environment CCME (2002) Canadian environmental quality guidelines (Vol. 2). Canadian Council of Ministers of the Environment
Capparelli MV, Moulatlet GM, de Souza Abessa DM, Lucas-Solis O, Rosero B, Galarza E, Tuba D, Carpintero N, Ochoa-Herrera V, Cipriani-Avila I (2020) An integrative approach to identify the impacts of multiple metal contamination sources on the Eastern Andean foothills of the Ecuadorian Amazonia. Sci Total Environ 709:136088. https://doi.org/10.1016/j.scitotenv.2019.136088
CAS
Article
Google Scholar
Chapman PM (1990) The sediment quality triad approach to determining pollution-induced degradation. Sci Total Environ 97:815–825
Article
Google Scholar
Chapman PM, McDonald BG, Lawrence GS (2002) Weight-of-evidence issues and frameworks for sediment quality (and other) assessments. Hum Ecol Risk Assess 8(7):1489–1515. https://doi.org/10.1080/20028091057457
Article
Google Scholar
Costas N, Pardo I, Méndez-Fernández L, Martínez-Madrid M, Rodríguez P (2018) Sensitivity of macroinvertebrate indicator taxa to metal gradients in mining areas in Northern Spain. Ecol Indic 93:207–218
Article
Google Scholar
Colborne SF, Maguire TJ, Mayer B, Nightingale M, Enns GE, Fisk AT, Drouillard KG, Mohamed MN, Weisener CG, Wellen C, Mundle SOC (2019) Water and sediment as sources of phosphate in aquatic ecosystems: The Detroit River and its role in the Laurentian Great Lakes. Sci Total Environ 647:1594–1603. https://doi.org/10.1016/j.scitotenv.2018.0
CAS
Article
Google Scholar
Cox BA (2003) A review of currently available in-stream water-quality models and their applicability for simulating dissolved oxygen in lowland rivers. Sci Total Environ 314–316:335–377. https://doi.org/10.1016/S0048-9697(03)00063-9
CAS
Article
Google Scholar
Dagnino A, Sforzini S, Donderor F, Fenoglio S, Bona E, Jensen J, Viarengo A (2008) A weight-of-evidence approach for the integration of environmental “triad” data to assess ecological risk and biological vulnerability. Integr Environ Assess Manag 4(3):314–326
CAS
Article
Google Scholar
Ecuadorian Ministry of Mines (2017) Concessions. Retrieved from http//:geo.controlminero.gob.ec
Encalada AC, Flecker AS, Poff NL, Suárez E, Herrera-R GA, Ríos-Touma B, Jumani S, Larson EI, Anderson EP (2019a) A global perspective on tropical montane rivers. Science 365(6458):1124–1129
CAS
Article
Google Scholar
Encalada AC, Guayasamin JM, Suárez E, Mena CF, Lessmann J, Sampedro C, Martínez P, Ochoa-Herrera V, Swing K, Celinacak M, Schreckinger J, Vieira J, Tapia A, Serrano C, Barragán K, Andrade S, Alexiades A, Troya MJ (2019b) Los ríos de las cuencas Andino-Amazónicas: Herramientas y guía de invertebrados para el diseño de programas de monitoreo
Finer M, Jenkins CN, Pimm SL, Keane B, Ross C (2008) Oil and gas projects in the Western Amazon: Threats to wilderness, biodiversity, and indigenous peoples. PLoS ONE. https://doi.org/10.1371/journal.pone.0002932
Article
Google Scholar
Flores M, Lopes U, Panuncio M, Riveros JC, Rodrigues S, Valenzuela S, Arancibia D, Bara-neto P (2010) WWF’s Living Amazon Initiative
Forster IP, Dominy W, Obaldo L, Tacon AGJ (2003) Rendered meat and bone meals as ingredients of diets for shrimp Litopenaeus vannamei (Boone, 1931). Aquaculture 219(1–4):655–670
Article
Google Scholar
Gómez-Barris M (2018) Review of la Amazonía Minada: Minería a gran escala y conflictos en el sur del Ecuador. In: European Review of Latin American and Caribbean Studies | Revista Europea de Estudios Latinoamericanos y del Caribe. https://doi.org/10.32992/erlacs.10427
Grall J, Glémarec M (1997) Using biotic indices to estimate macrobenthic community perturbations in the Bay of Brest. Estuar Coastal Shelf Sci 44:43–53
Article
Google Scholar
Grill G, Lehner B, Thieme M, Geenen B, Tickner D, Antonelli F, Babu S, Borrelli P, Cheng L, Crochetiere H, Ehalt Macedo H, Filgueiras R, Goichot M, Higgins J, Hogan Z, Lip B, McClain ME, Meng J, Mulligan M, Nilsson C, Olden JD, Opperman JJ, Petry P, Reidy Liermann C, Sáenz L, Salinas-Rodríguez S, Schelle P, Schmitt RJP, Snider J, Tan F, Tockner K, Valdujo PH, van Soesbergen A, Zarfl C (2019) Mapping the world’s free-flowing rivers. Nature 569(7755):215–221. https://doi.org/10.1038/s41586-019-1111-9
CAS
Article
Google Scholar
Gupta N, Pandey P, Hussain J (2017) Effect of physicochemical and biological parameters on the quality of river water of Narmada, Madhya Pradesh. India Water Sci 31(1):11–23. https://doi.org/10.1016/j.wsj.2017.03.002
Article
Google Scholar
Guo Y, He L-L, Zhao D-X, Gong L-D, Liu C, Yang Z-Z (2016) How does ammonia bind to the oxygen-evolving complex in the S2 state of photosynthetic water oxidation? Theoretical support and implications for the W1 substitution mechanism. Phys Chem Chem Phys 18(46):31551–31565
CAS
Article
Google Scholar
Hering D, Feld CK, Moog O, Ofenbo T (2006) Cook book for the development of a Multimetric Index for biological condition of aquatic ecosystems: experiences from the European AQEM and STAR projects and related initiatives. https://doi.org/10.1007/s10750-006-0087-2
Hoekstra NT, Bosker T, Lantinga T (2002) Effects of cattle dung from farms with different feeding strat- egies on germination and initial root growth of cress (Lepidium sativum L.). Agric Ecosyst Environ 93:189–196
Article
Google Scholar
Hussan A, Gon T (2016) Common problems in aquaculture and their preventive measures. Aquac Times J 2(5):6–9
Google Scholar
INEC (2010) Fasiculo provincial Napo: 0–7.
Isch E (2011) Contaminación de las aguas y políticas para enfrentarla 52. http://www.camaren.org/documents/contaminacion.pdf
Josse C, Cuesta F, Navarro G, Barrena V, Cabrera E, Chacón-Moreno E, Ferreira W, Peralvo M, Saito J, Tovar A (2009) Ecosistemas de los Andes del norte y centro. Bolivia, Colombia, Ecuador, Perú y Venezuela
Google Scholar
Kocour Kroupová H, Valentová O, Svobodová Z, Šauer P, Máchová J (2018) Toxic effects of nitrite on freshwater organisms: a review. Rev Aquac 10(3):525–542
Article
Google Scholar
Koçer MAT, Sevgili H (2014) Parameters selection for water quality index in the assessment of the environmental impacts of land-based trout farms. J Ind Ecol 36:672–681. https://doi.org/10.1016/j.ecolind.2013.09.034
CAS
Article
Google Scholar
Lessmann J, Troya MJ, Flecker AS, Funk WC, Guayasamin JM, Ochoa-Herrera V, Poff NL, Suárez E, Encalada AC (2019) Validating anthropogenic threat maps as a tool for assessing river ecological integrity in Andean-Amazon basins. PeerJ 7:e8060. https://doi.org/10.7717/peerj.8060
Article
Google Scholar
Luoma SN, Cain DJ, Rainbow PS (2010) Calibrating biomonitors to ecological disturbance: a new technique for explaining metal effects in natural waters. Integr Environ Assess Manag Int J 6(2):199–209
CAS
Google Scholar
Lyu J, Park J, Kumar Pandey L, Choi S, Lee H, De Saeger J et al (2018) Testing the toxicity of metals, phenol, effluents, and receiving waters by root elongation in Lactuca sativa L. Ecotoxicol Environ Saf 149:225–232. https://doi.org/10.1016/j.ecoenv.2017.11.006
CAS
Article
Google Scholar
Marsalek J, Rochfort Q, Brownlee B, Mayer T, Servos M (1999) An exploratory study of urban runoff toxicity. Water Sci Technol 39(12):33–39
CAS
Article
Google Scholar
McClain ME, Naiman RJ (2008) Andean influences on the biogeochemistry and ecology of the Amazon River. BioScience 58(4):325–338
Article
Google Scholar
Melcher AH, Bakken TH, Friedrich T, Greimel F, Humer N (2016) Drawing together multiple lines of evidence from assessment studies of hydropeaking pressures in impacted rivers. December. https://doi.org/10.1086/690295
Moquet JS, Guyot JL, Crave A, Viers J, Filizola N, Martinez JM, Oliveira TC, Sánchez LSH, Lagane C, Casimiro WSL, Noriega L, Pombosa R (2016) Amazon River dissolved load: temporal dynamics and annual budget from the Andes to the ocean. Environ Sci Pollut Res 23(12):11405–11429. https://doi.org/10.1007/s11356-015-5503-6
CAS
Article
Google Scholar
Mora A, Jumbo-Flores D, González-Merizalde M, Bermeo-Flores SA, Alvarez-Figueroa P, Mahlknecht J, Hernández-Antonio A (2019) Heavy metal enrichment factors in fluvial sediments of an amazonian basin impacted by gold mining. Bull Environ Contam Toxicol 102(2):210–217. https://doi.org/10.1007/s00128-019-02545-w
CAS
Article
Google Scholar
Nong X, Shao D, Zhong H, Liang J (2020) Evaluation of water quality in the South-to-North Water Diversion Project of China using the water quality index (WQI) method. Water Res 128:115781. https://doi.org/10.1016/j.watres.2020.115781
CAS
Article
Google Scholar
Noori R, Berndtsson R, Hosseinzadeh M, Adamowski JF, Abyaneh MR (2018) A critical review on the application of the National Sanitation Foundation Water Quality Index. Environ Pollut. https://doi.org/10.1016/j.envpol.2018.10.076
Article
Google Scholar
OECD TG 208 (2006) Terrestrial plant test: seedling emergence and seedling growth test. OECD Guidelines for the Testing of Chemicals, Section, 2. OECD Publishing, Paris, July.
Regina S, Couceiro M, Hamada N, Forsberg BR, Padovesi-fonseca C (2010) Effects of anthropogenic silt on aquatic macroinvertebrates and abiotic variables in streams in the Brazilian Amazon: 89–103. https://doi.org/10.1007/s11368-009-0148-z
Rocha CA, Sousa FW, Zanella ME, Oliveira AG, Nascimento RF, Souza OV, Cajazeiras IM, Lima J, Cavalcante RM (2017) Environmental quality assessment in areas used for physical activity and recreation in a city affected by intense urban expansion (Fortaleza-CE, Brazil): Implications for public health policy. Expos Health 9(3):169–182
CAS
Article
Google Scholar
Roldán-Pérez G (2016) Los macroinvertebrados como bioindicadores de la calidad del agua: cuatro décadas de desarrollo en Colombia y Latinoamerica. Revista de la Academia Colombiana de Ciencias Exactas. Físicas y Naturales 40(155):254–274
Google Scholar
Roy BA, Zorrilla M, Endara L, Thomas DC, Vandegrift R, Rubenstein JM, Policha T, Ríos-Touma B, Read M (2018) New mining concessions could severely decrease biodiversity and ecosystem services in Ecuador. Trop Conserv Sci 11:1940082918780427
Article
Google Scholar
Santos R, Joyeux A, Besnard A, Blanchard C, Halkett C, Bony S, Sanchez W, Devaux A (2017) An integrative approach to assess ecological risks of surface water contamination for fish populations. Environ Pollut 220:588–596
CAS
Article
Google Scholar
Stoddard JL, Herlihy AT, Peck DV, Hughes RM, Whittier TR, Tarquinio E, Stoddard JL, Herlihy AT, Peck DV, Whittier TR (2008) A process for creating multimetric indices for large-scale aquatic surveys. J North Am Benthol Soc 27(4):878–891. https://doi.org/10.1899/08-053.1
Article
Google Scholar
Tacon AG, Metian M, Hasan MR (2009) Feed ingredients and fertilizers for farmed aquatic animals: sources and composition (No. 540). Food and Agriculture Organization of the United Nations (FAO)
Taylor P, Smith EP, Lipkovich I, Ye K, Smith E P, Lipkovich I, Ye K (2010) Weight-of-Evidence (WOE): quantitative estimation of probability of impairment for individual and multiple lines of evidence. January 2015, 37–41. https://doi.org/10.1080/20028091057493
TULSMA (2015) Edición Especial No 387 Registro Oficial – Edición Especial No 387. Registro Oficial 097:6–26
Google Scholar
Ustaoğlu F, Tepe Y, Taş B (2020) Assessment of stream quality and health risk in a subtropical Turkey river system: a combined approach using statistical analysis and water quality index. Ecol Indic 113:105815. https://doi.org/10.1016/j.ecolind.2019.105815
CAS
Article
Google Scholar
U.S.EPA (1996) Ecological Effects Test Guidelines Seed Germination/Root Elongation Toxicity Test. Test, April. EPA 712-C-96-154
Wang X, Su P, Lin Q, Song J, Sun H, Cheng D, Wang S, Peng J, Fu J (2019) Distribution , assessment and coupling relationship of heavy metals and macroinvertebrates in sediments of the Weihe River Basin. Sustainable
Wright JF, Moss D, Armitage PD, Furse MT (1984) A preliminary classification of running-water sites in Great Britain based on macro-invertebrate species and the prediction of community type using environmental data: 221–256.