Skip to main content

Assessing the Quality of Amazon Aquatic Ecosystems with Multiple Lines of Evidence: The Case of the Northeast Andean Foothills of Ecuador

Abstract

We assessed the quality of Andes-Amazonia streams in Ecuador impacted by gold mining (GM), discharges from inefficient sewage network in urban areas (UA), wastes from fish farming (FF) and from non-functional landfill (LF) and other few threats (FT). We selected three lines of evidence (LOE) that were used separately and integrated into a index: water quality (WQI) and macroinvertebrate community (AAMBI) indices and phytotoxicity tests. Streams affected by UA and LF had the lowest scores to WQI and phytotoxicity, and by GM had the lowest scores to AAMBI. Macroinvertebrate absence in GM should be considered as a warning signal of long-term mining impacts in the area. The integrated LOE index showed that sites with identified threats had 30%–53% stream quality decline compared to FT sites. The use of the selected LOE seems to be a useful tools for long-term monitoring and evaluation of this sensitive aquatic ecosystem.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Alexiades AV, Encalada AC, Lessmann J, Guayasamin JM (2019) Spatial prediction of stream physicochemical parameters for the Napo River Basin. Ecuador J Freshw Ecol 34(1):247–261

    CAS  Article  Google Scholar 

  • Altenburger R, Ait-aissa S, Antczak P, Backhaus T, Barceló D, Seiler T, Brion F, Busch W, Chipman K, López M, Alda D, Aragão GD, Escher BI, Falciani F, Faust M, Focks A, Hilscherova K, Hollender J, Hollert H, Jäger F, Jahnke A, Kortenkamp A, Krauss M, Lemkine GF, Munthe J, Neumann S, Schymanski EL, Scrimshaw M, Segner H, Slobodnik J, Smedes F, Kughathas S, Teodorovic I, Tindall AJ, Tollefsen KE, Walz K-H, Williams TD, Van den Brink PJ, van Gils J, Vrana B, Zhang X, Brack W (2015) Future water quality monitoring—Adapting tools to deal with mixtures of pollutants in water resource management. Sci Total Environ 512–513:540–551. https://doi.org/10.1016/j.scitotenv.2014.12.057

    CAS  Article  Google Scholar 

  • APHA (1998) Standard methods for the examination of water and wastewater. American Public Health Association, 25th edn, pp. 1–101. Washington, DC, Centennial. ISBN 9780875532356.

  • Backhaus T, Brack W, Van den Brink PJ, Deutschmann B, Hollert H, Posthuma L, Segner H, Seiler TB, Teodorovic I, Focks A (2019) Assessing the ecological impact of chemical pollution on aquatic ecosystems requires the systematic exploration and evaluation of four lines of evidence. Environ Sci Eur. https://doi.org/10.1186/s12302-019-0276-z

    Article  Google Scholar 

  • Batsaikhan B, Kwon J-S, Kim K-H, Lee Y-J, Lee J-H, Badarch M, Yun S-T (2017) Hydrochemical evaluation of the influences of mining activities on river water chemistry in central northern Mongolia. Environ Sci Pollut Res 24(2):2019–2034. https://doi.org/10.1007/s11356-016-7895-3

    CAS  Article  Google Scholar 

  • Banerjee T, Srivastava RK (2009) Application of water quality index for assessment of surface water quality surrounding integrated industrial estate-Pantnagar Tirthankar Banerjee and Rajeev Kumar Srivastava. 2041–2054. https://doi.org/10.2166/wst.2009.537

  • Belz RG, Patama M, Sinkkonen A (2018) Low doses of six toxicants change plant size distribution in dense populations of Lactuca sativa. Sci Total Environ 631:510–523

    Article  Google Scholar 

  • Burton GA Jr (2002) Sediment quality criteria in use around the world. Limnology 3(2):65–76

    CAS  Article  Google Scholar 

  • Canadian Council of Ministers of the Environment CCME (2002) Canadian environmental quality guidelines (Vol. 2). Canadian Council of Ministers of the Environment

  • Capparelli MV, Moulatlet GM, de Souza Abessa DM, Lucas-Solis O, Rosero B, Galarza E, Tuba D, Carpintero N, Ochoa-Herrera V, Cipriani-Avila I (2020) An integrative approach to identify the impacts of multiple metal contamination sources on the Eastern Andean foothills of the Ecuadorian Amazonia. Sci Total Environ 709:136088. https://doi.org/10.1016/j.scitotenv.2019.136088

    CAS  Article  Google Scholar 

  • Chapman PM (1990) The sediment quality triad approach to determining pollution-induced degradation. Sci Total Environ 97:815–825

    Article  Google Scholar 

  • Chapman PM, McDonald BG, Lawrence GS (2002) Weight-of-evidence issues and frameworks for sediment quality (and other) assessments. Hum Ecol Risk Assess 8(7):1489–1515. https://doi.org/10.1080/20028091057457

    Article  Google Scholar 

  • Costas N, Pardo I, Méndez-Fernández L, Martínez-Madrid M, Rodríguez P (2018) Sensitivity of macroinvertebrate indicator taxa to metal gradients in mining areas in Northern Spain. Ecol Indic 93:207–218

    Article  Google Scholar 

  • Colborne SF, Maguire TJ, Mayer B, Nightingale M, Enns GE, Fisk AT, Drouillard KG, Mohamed MN, Weisener CG, Wellen C, Mundle SOC (2019) Water and sediment as sources of phosphate in aquatic ecosystems: The Detroit River and its role in the Laurentian Great Lakes. Sci Total Environ 647:1594–1603. https://doi.org/10.1016/j.scitotenv.2018.0

    CAS  Article  Google Scholar 

  • Cox BA (2003) A review of currently available in-stream water-quality models and their applicability for simulating dissolved oxygen in lowland rivers. Sci Total Environ 314–316:335–377. https://doi.org/10.1016/S0048-9697(03)00063-9

    CAS  Article  Google Scholar 

  • Dagnino A, Sforzini S, Donderor F, Fenoglio S, Bona E, Jensen J, Viarengo A (2008) A weight-of-evidence approach for the integration of environmental “triad” data to assess ecological risk and biological vulnerability. Integr Environ Assess Manag 4(3):314–326

    CAS  Article  Google Scholar 

  • Ecuadorian Ministry of Mines (2017) Concessions. Retrieved from http//:geo.controlminero.gob.ec

  • Encalada AC, Flecker AS, Poff NL, Suárez E, Herrera-R GA, Ríos-Touma B, Jumani S, Larson EI, Anderson EP (2019a) A global perspective on tropical montane rivers. Science 365(6458):1124–1129

    CAS  Article  Google Scholar 

  • Encalada AC, Guayasamin JM, Suárez E, Mena CF, Lessmann J, Sampedro C, Martínez P, Ochoa-Herrera V, Swing K, Celinacak M, Schreckinger J, Vieira J, Tapia A, Serrano C, Barragán K, Andrade S, Alexiades A, Troya MJ (2019b) Los ríos de las cuencas Andino-Amazónicas: Herramientas y guía de invertebrados para el diseño de programas de monitoreo

  • Finer M, Jenkins CN, Pimm SL, Keane B, Ross C (2008) Oil and gas projects in the Western Amazon: Threats to wilderness, biodiversity, and indigenous peoples. PLoS ONE. https://doi.org/10.1371/journal.pone.0002932

    Article  Google Scholar 

  • Flores M, Lopes U, Panuncio M, Riveros JC, Rodrigues S, Valenzuela S, Arancibia D, Bara-neto P (2010) WWF’s Living Amazon Initiative

  • Forster IP, Dominy W, Obaldo L, Tacon AGJ (2003) Rendered meat and bone meals as ingredients of diets for shrimp Litopenaeus vannamei (Boone, 1931). Aquaculture 219(1–4):655–670

    Article  Google Scholar 

  • Gómez-Barris M (2018) Review of la Amazonía Minada: Minería a gran escala y conflictos en el sur del Ecuador. In: European Review of Latin American and Caribbean Studies | Revista Europea de Estudios Latinoamericanos y del Caribe. https://doi.org/10.32992/erlacs.10427

  • Grall J, Glémarec M (1997) Using biotic indices to estimate macrobenthic community perturbations in the Bay of Brest. Estuar Coastal Shelf Sci 44:43–53

    Article  Google Scholar 

  • Grill G, Lehner B, Thieme M, Geenen B, Tickner D, Antonelli F, Babu S, Borrelli P, Cheng L, Crochetiere H, Ehalt Macedo H, Filgueiras R, Goichot M, Higgins J, Hogan Z, Lip B, McClain ME, Meng J, Mulligan M, Nilsson C, Olden JD, Opperman JJ, Petry P, Reidy Liermann C, Sáenz L, Salinas-Rodríguez S, Schelle P, Schmitt RJP, Snider J, Tan F, Tockner K, Valdujo PH, van Soesbergen A, Zarfl C (2019) Mapping the world’s free-flowing rivers. Nature 569(7755):215–221. https://doi.org/10.1038/s41586-019-1111-9

    CAS  Article  Google Scholar 

  • Gupta N, Pandey P, Hussain J (2017) Effect of physicochemical and biological parameters on the quality of river water of Narmada, Madhya Pradesh. India Water Sci 31(1):11–23. https://doi.org/10.1016/j.wsj.2017.03.002

    Article  Google Scholar 

  • Guo Y, He L-L, Zhao D-X, Gong L-D, Liu C, Yang Z-Z (2016) How does ammonia bind to the oxygen-evolving complex in the S2 state of photosynthetic water oxidation? Theoretical support and implications for the W1 substitution mechanism. Phys Chem Chem Phys 18(46):31551–31565

    CAS  Article  Google Scholar 

  • Hering D, Feld CK, Moog O, Ofenbo T (2006) Cook book for the development of a Multimetric Index for biological condition of aquatic ecosystems: experiences from the European AQEM and STAR projects and related initiatives. https://doi.org/10.1007/s10750-006-0087-2

  • Hoekstra NT, Bosker T, Lantinga T (2002) Effects of cattle dung from farms with different feeding strat- egies on germination and initial root growth of cress (Lepidium sativum L.). Agric Ecosyst Environ 93:189–196

    Article  Google Scholar 

  • Hussan A, Gon T (2016) Common problems in aquaculture and their preventive measures. Aquac Times J 2(5):6–9

    Google Scholar 

  • INEC (2010) Fasiculo provincial Napo: 0–7.

  • Isch E (2011) Contaminación de las aguas y políticas para enfrentarla 52. http://www.camaren.org/documents/contaminacion.pdf

  • Josse C, Cuesta F, Navarro G, Barrena V, Cabrera E, Chacón-Moreno E, Ferreira W, Peralvo M, Saito J, Tovar A (2009) Ecosistemas de los Andes del norte y centro. Bolivia, Colombia, Ecuador, Perú y Venezuela

    Google Scholar 

  • Kocour Kroupová H, Valentová O, Svobodová Z, Šauer P, Máchová J (2018) Toxic effects of nitrite on freshwater organisms: a review. Rev Aquac 10(3):525–542

    Article  Google Scholar 

  • Koçer MAT, Sevgili H (2014) Parameters selection for water quality index in the assessment of the environmental impacts of land-based trout farms. J Ind Ecol 36:672–681. https://doi.org/10.1016/j.ecolind.2013.09.034

    CAS  Article  Google Scholar 

  • Lessmann J, Troya MJ, Flecker AS, Funk WC, Guayasamin JM, Ochoa-Herrera V, Poff NL, Suárez E, Encalada AC (2019) Validating anthropogenic threat maps as a tool for assessing river ecological integrity in Andean-Amazon basins. PeerJ 7:e8060. https://doi.org/10.7717/peerj.8060

    Article  Google Scholar 

  • Luoma SN, Cain DJ, Rainbow PS (2010) Calibrating biomonitors to ecological disturbance: a new technique for explaining metal effects in natural waters. Integr Environ Assess Manag Int J 6(2):199–209

    CAS  Google Scholar 

  • Lyu J, Park J, Kumar Pandey L, Choi S, Lee H, De Saeger J et al (2018) Testing the toxicity of metals, phenol, effluents, and receiving waters by root elongation in Lactuca sativa L. Ecotoxicol Environ Saf 149:225–232. https://doi.org/10.1016/j.ecoenv.2017.11.006

    CAS  Article  Google Scholar 

  • Marsalek J, Rochfort Q, Brownlee B, Mayer T, Servos M (1999) An exploratory study of urban runoff toxicity. Water Sci Technol 39(12):33–39

    CAS  Article  Google Scholar 

  • McClain ME, Naiman RJ (2008) Andean influences on the biogeochemistry and ecology of the Amazon River. BioScience 58(4):325–338

    Article  Google Scholar 

  • Melcher AH, Bakken TH, Friedrich T, Greimel F, Humer N (2016) Drawing together multiple lines of evidence from assessment studies of hydropeaking pressures in impacted rivers. December. https://doi.org/10.1086/690295

  • Moquet JS, Guyot JL, Crave A, Viers J, Filizola N, Martinez JM, Oliveira TC, Sánchez LSH, Lagane C, Casimiro WSL, Noriega L, Pombosa R (2016) Amazon River dissolved load: temporal dynamics and annual budget from the Andes to the ocean. Environ Sci Pollut Res 23(12):11405–11429. https://doi.org/10.1007/s11356-015-5503-6

    CAS  Article  Google Scholar 

  • Mora A, Jumbo-Flores D, González-Merizalde M, Bermeo-Flores SA, Alvarez-Figueroa P, Mahlknecht J, Hernández-Antonio A (2019) Heavy metal enrichment factors in fluvial sediments of an amazonian basin impacted by gold mining. Bull Environ Contam Toxicol 102(2):210–217. https://doi.org/10.1007/s00128-019-02545-w

    CAS  Article  Google Scholar 

  • Nong X, Shao D, Zhong H, Liang J (2020) Evaluation of water quality in the South-to-North Water Diversion Project of China using the water quality index (WQI) method. Water Res 128:115781. https://doi.org/10.1016/j.watres.2020.115781

    CAS  Article  Google Scholar 

  • Noori R, Berndtsson R, Hosseinzadeh M, Adamowski JF, Abyaneh MR (2018) A critical review on the application of the National Sanitation Foundation Water Quality Index. Environ Pollut. https://doi.org/10.1016/j.envpol.2018.10.076

    Article  Google Scholar 

  • OECD TG 208 (2006) Terrestrial plant test: seedling emergence and seedling growth test. OECD Guidelines for the Testing of Chemicals, Section, 2. OECD Publishing, Paris, July.

  • Regina S, Couceiro M, Hamada N, Forsberg BR, Padovesi-fonseca C (2010) Effects of anthropogenic silt on aquatic macroinvertebrates and abiotic variables in streams in the Brazilian Amazon: 89–103. https://doi.org/10.1007/s11368-009-0148-z

  • Rocha CA, Sousa FW, Zanella ME, Oliveira AG, Nascimento RF, Souza OV, Cajazeiras IM, Lima J, Cavalcante RM (2017) Environmental quality assessment in areas used for physical activity and recreation in a city affected by intense urban expansion (Fortaleza-CE, Brazil): Implications for public health policy. Expos Health 9(3):169–182

    CAS  Article  Google Scholar 

  • Roldán-Pérez G (2016) Los macroinvertebrados como bioindicadores de la calidad del agua: cuatro décadas de desarrollo en Colombia y Latinoamerica. Revista de la Academia Colombiana de Ciencias Exactas. Físicas y Naturales 40(155):254–274

    Google Scholar 

  • Roy BA, Zorrilla M, Endara L, Thomas DC, Vandegrift R, Rubenstein JM, Policha T, Ríos-Touma B, Read M (2018) New mining concessions could severely decrease biodiversity and ecosystem services in Ecuador. Trop Conserv Sci 11:1940082918780427

    Article  Google Scholar 

  • Santos R, Joyeux A, Besnard A, Blanchard C, Halkett C, Bony S, Sanchez W, Devaux A (2017) An integrative approach to assess ecological risks of surface water contamination for fish populations. Environ Pollut 220:588–596

    CAS  Article  Google Scholar 

  • Stoddard JL, Herlihy AT, Peck DV, Hughes RM, Whittier TR, Tarquinio E, Stoddard JL, Herlihy AT, Peck DV, Whittier TR (2008) A process for creating multimetric indices for large-scale aquatic surveys. J North Am Benthol Soc 27(4):878–891. https://doi.org/10.1899/08-053.1

    Article  Google Scholar 

  • Tacon AG, Metian M, Hasan MR (2009) Feed ingredients and fertilizers for farmed aquatic animals: sources and composition (No. 540). Food and Agriculture Organization of the United Nations (FAO)

  • Taylor P, Smith EP, Lipkovich I, Ye K, Smith E P, Lipkovich I, Ye K (2010) Weight-of-Evidence (WOE): quantitative estimation of probability of impairment for individual and multiple lines of evidence. January 2015, 37–41. https://doi.org/10.1080/20028091057493

  • TULSMA (2015) Edición Especial No 387 Registro Oficial – Edición Especial No 387. Registro Oficial 097:6–26

    Google Scholar 

  • Ustaoğlu F, Tepe Y, Taş B (2020) Assessment of stream quality and health risk in a subtropical Turkey river system: a combined approach using statistical analysis and water quality index. Ecol Indic 113:105815. https://doi.org/10.1016/j.ecolind.2019.105815

    CAS  Article  Google Scholar 

  • U.S.EPA (1996) Ecological Effects Test Guidelines Seed Germination/Root Elongation Toxicity Test. Test, April. EPA 712-C-96-154

  • Wang X, Su P, Lin Q, Song J, Sun H, Cheng D, Wang S, Peng J, Fu J (2019) Distribution , assessment and coupling relationship of heavy metals and macroinvertebrates in sediments of the Weihe River Basin. Sustainable

  • Wright JF, Moss D, Armitage PD, Furse MT (1984) A preliminary classification of running-water sites in Great Britain based on macro-invertebrate species and the prediction of community type using environmental data: 221–256.

Download references

Acknowledgements

This investigation received financial support from the European Union in coordination with the Spanish Cooperation International Agency for Development (AECID), grant to MVC. The authors are thankful to the drivers and technicians of the Universidad Regional Amazónica Ikiam and to the staff of the Laboratorio Nacional de Referencia del Agua (LNRA) of Ikiam and Joel Ernesto Zamora Villon for their support in sample collection and logistics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana V. Capparelli.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could influence the present investigation.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Galarza, E., Cabrera, M., Espinosa, R. et al. Assessing the Quality of Amazon Aquatic Ecosystems with Multiple Lines of Evidence: The Case of the Northeast Andean Foothills of Ecuador. Bull Environ Contam Toxicol 107, 52–61 (2021). https://doi.org/10.1007/s00128-020-03089-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-020-03089-0

Keywords

  • WQI index
  • Phytotoxicity
  • Macroinvertebrate community index
  • Gold mining
  • Fish farming
  • Non-functional landfills
  • Urban contamination