Skip to main content

Toxicity Evaluation of Six Textile Dyes on Growth, Metabolism and Elemental Composition (C, H, N, S) of Microalgae Spirulina platensis: The Environmental Consequences

Abstract

A concentration-dependent decrease in growth rate and pigment concentration of the blue-green alga Spirulina platensis was recorded after the exposure to graded (5–40 ppm) concentration of six textile dyes. The profile of vital elements (C, H, N, S) also showed a significant variation due to dye toxicity. The algal population showed up to 50% decrease in protein content after exposure to the dyes. Among the pigments, the dye exposure resulted in > 90% decreases in phycocyanin however, total chlorophyll and carotenoids exhibited up to a 50% decrease compared to control. The findings indicate that the unregulated discharge of textile dyes will directly impact the photoautotrophic organisms leading to ecological imbalance in aquatic ecosystems. Overall observations of the report provide baseline information about the toxicity of textile dyes and giving a better insight into the little-understood mechanisms of dye toxicity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Cai H, Liang J, Ning XA, Lai X, Li Y (2020) Algal toxicity induced by effluents from textile-dyeing wastewater treatment plants. Environ Sci 91:199–208

    Article  Google Scholar 

  2. Chamovitz D, Sandmann G, Hirschberg J (1993) Molecular and biochemical characterization of herbicide-resistant mutants of cyanobacteria reveals that phytoene desaturation is a rate-limiting step in carotenoid biosynthesis. J Biol Chem 268:17348–17353

    CAS  Article  Google Scholar 

  3. Chen S, Zhang L, Chen H, Chen Z, Wen Y (2019) Enantioselective toxicity of chiral herbicide metolachlor to Microcystis aeruginosa. J Agric Food Chem 67(6):1631–1637

    CAS  Article  Google Scholar 

  4. Dwivedi S (2013) Effect of textile dyes on Spirulina platensis. J Chem Pharm Res 5:66–80

    CAS  Google Scholar 

  5. Fernández-Naveira A, Rioboo C, Cid A, Herrero C (2016) Atrazine induced changes in elemental and biochemical composition and nitrate reductase activity in Chlamydomonas reinhardtii. Eur J Phycol 51:338–345

    Article  Google Scholar 

  6. Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University Press, Cambridge, p 333

    Google Scholar 

  7. Gao C, Gao L, Duan P, Wu H, Li M (2020) Evaluating combined toxicity of binary heavy metals to the cyanobacterium Microcystis: a theoretical non-linear combined toxicity assessment method. Ecotoxicol Environ Saf 187:109809

    CAS  Article  Google Scholar 

  8. Gita S, Hussan A, Choudhury TG (2017) Impact of textile dyes waste on aquatic environments and its treatment. Environ Ecol 35(3C):2349–2353

    Google Scholar 

  9. Gita S, Shukla SP, Saharan N, Prakash C, Deshmukhe G (2019) Toxic effects of selected textile dyes on elemental composition, photosynthetic pigments, protein content and growth of a freshwater chlorophycean alga C. vulgaris. Bull Environ Contam Toxicol 102:795–801

    CAS  Article  Google Scholar 

  10. Hu TL, Wu SC (2001) Assessment of the effect of azo dye RP2B on the growth of a nitrogen fixing cyanobacterium–Anabaena sp. Bioresour Technol 77:93–95

    CAS  Article  Google Scholar 

  11. Kratz WA, Myers J (1955) Nutrition and growth of several blue-green algae. Am J Bot 42:282

    CAS  Article  Google Scholar 

  12. Lowry OH, Rosenbrough NJ, Farr AL, Randal RJ (1951) Proteins estimation by folin phenol method. J Biol Chem 193:265

    CAS  Article  Google Scholar 

  13. Mahalakshmi S, Lakshmi D, Menaga U (2015) Biodegradation of different concentration of dye (Congo red dye) by using green and blue green algae. Int J Environ Res 9:735–744

    CAS  Google Scholar 

  14. Mathias AC, Rilwan IM (2013) Effect of indigo dye effluent on the growth, biomass production and phenotypic plasticity of Scenedesmus quadricauda (Chlorococcales). An Acad Bras Ciênc 86:419–428

    Google Scholar 

  15. Mathur N, Bhatnagar P, Sharma P (2012) Review of the mutagenicity of textile dye products. Univ J Environ Res Technol 2:1–18

    CAS  Google Scholar 

  16. Moran R (1982) Formulae for determination of chlorophyllous pigments extracted with N,N-dimethylformamide. Plant Physiol 69:1376–1381

    CAS  Article  Google Scholar 

  17. Nestler H, Groh KJ, Schonenberger R, Behra R, Schirmer K, Eggen RI et al (2012) Multiple-endpoint assay provides a detailed mechanistic view of responses to herbicide exposure in Chlamydomonas reinhardtii. Aquat Toxicol 110:214–224

    Article  Google Scholar 

  18. OECD (1984) OECD guidelines for testing of chemicals 201, Alga, growth inhibition test (adopted June 1984)

  19. O’Neill C, Hawkes FR, Hawkes DL, Lourenyo ND, Pinheiro HM, Delee W (1999) Colour in textile effiuents-sources, measurement, discharge consents and simulation: a review. J Chem Technol Biotechnol 174:1009–1018

    Google Scholar 

  20. Pazdzior K, Wrebiak J, Klepacz-Smolka A, Gmurek M, Bilinska L, Kos L et al (2017) Influence of ozonation and biodegradation on toxicity of industrial textile wastewater. J Environ Manag 195:166–173

    CAS  Article  Google Scholar 

  21. Punzi M, Nilsson F, Anbalagan A, Svensson BM, Jonsson K, Mattiasson B et al (2015) Combined anaerobic-ozonation process for treatment of textile wastewater: removal of acute toxicity and mutagenicity. J Hazard Mater 292:52–60

    CAS  Article  Google Scholar 

  22. Razo-Flores E, Luijaten M, Donlon B, Lettinga G, Field A (1997) Complete biodegradation of the azo dye azodisalicylate under anaerobic conditions. Environ Sci Technol 31:2098–2103

    CAS  Article  Google Scholar 

  23. Rosa EVC, Giuradelli TM, Corrêa AXR, Rörig LR, Schwingel PR, Resgalla-Jr C, Radetski CM (2006) Ecotoxicological evaluation of the short term effects of fresh and stabilized textile sludges before application in forest soil restoration. Environ Pollut 146:463–469

    Article  Google Scholar 

  24. Shukla SP, Kumar A, Tiwari DN, Mishra BP, Gupta GS (1992) Assessment of the effect of the toxicity of a textile dye on Nostoc muscorum ISU, a diazotrophic cyanobacterium. Environ Pollut 84(1):23–25

    Article  Google Scholar 

  25. Siegelman HW, Kycia JH (1978) Algal biliproteins. In: Hellebust JA, Craigie JS (eds) Handbook of phycological methods: physiological and biochemical. Cambridge University Press, Cambridge, pp 71–79

    Google Scholar 

  26. Suteu D, Zaharia C, Malutan T (2012) Biosorbents based on Lignin used in biosorption processes from wastewater treatment. In: Paterson RJ (ed) Lignin properties and applications in biotechnology and bioenergy. Nova Science Publishers, New York, p 27

    Google Scholar 

  27. Syafalni S, Abustan I, Dahlan I, Wah CK, Umar G (2012) Treatment of dye wastewater using granular activated carbon and zeolite filter. Mod Appl Sci 6(2):37–51

    CAS  Google Scholar 

  28. Taibi K, Taibi F, Abderrahim LA, Ennajah A, Belkhodja M, Mulet JM (2016) Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris. S Afr J Bot 105:306–312

    CAS  Article  Google Scholar 

  29. Xi J, Shao J, Wang Y, Wang X, Yang H, Zhang X, Xiong D (2019) Acute toxicity of triflumizole to freshwater green algae Chlorella vulgaris. Pestic Biochem Phys 158:135–142

    CAS  Article  Google Scholar 

  30. Yaseen DA, Scholz M (2018) Comparision of experimental ponds for the treatment of dye wastewater under controlled and semi-natural conditions. Environ Sci Pollut Res 24:16031–16040

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director, ICAR-CIFE, Mumbai, for providing the necessary facilities. S. Gita acknowledges the valuable inputs from the advisory committee members. Archroma, Mumbai, is acknowledged for gifting the dyes. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Satya Prakash Shukla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gita, S., Shukla, S.P., Deshmukhe, G. et al. Toxicity Evaluation of Six Textile Dyes on Growth, Metabolism and Elemental Composition (C, H, N, S) of Microalgae Spirulina platensis: The Environmental Consequences. Bull Environ Contam Toxicol 106, 302–309 (2021). https://doi.org/10.1007/s00128-020-03074-7

Download citation

Keywords

  • Dyes
  • Spirulina platensis
  • Pigments
  • Growth
  • Protein