Skip to main content

Synthesis and Characterization of Activated Carbon from Biowaste-Peanut Shell and Application to Preconcentration/Removal of Uranium

Abstract

This study aims to synthesize and characterize an economical and ecological adsorbent with high adsorption capacity. For this purpose, the peanut shells (Pistacia vera L.) were modified chemically. After the synthesis of activated carbon (AC), the optimum conditions for enrichment steps were performed using parameters: pH and contact time for uranium in the model solutions. The measurements were carried out by inductively coupled plasma-mass spectrometry (ICP-MS). From the shapes of the BET isotherms, the AC obtained exhibits type I. The study indicated that the surface area and total pore volume of the AC were found to be 679.9 m2 g−1 and 0.31 cc g−1, respectively. The adsorption capacity was found to be 260 mg g−1. The optimum pH was found to be 6.0 for enrichment using the AC obtained by sulfuric acid as a chemical-modifier. The optimized method was applied to enrichment of U at ppb levels in the model solutions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Bicim T, Yaman M (2016) Sensitive determination of uranium in natural waters using UV-Vis spectrometry after preconcentration by ion-imprinted polymer-ternary complexes. J AOAC Int 99(4):1043–1048

    CAS  Article  Google Scholar 

  2. Das S et al (2016a) Extracting uranium from seawater: promising AI series adsorbents. Ind Eng Chem Res 55:4103–4109

    CAS  Article  Google Scholar 

  3. Das S et al (2016b) Extracting uranium from seawater: promising AF series adsorbents. Ind Eng Chem Res 55:4110–4117

    CAS  Article  Google Scholar 

  4. Das S et al (2016c) Novel poly(imide dioxime) sorbents: development and testing for enhanced extraction of uranium from natural seawater. Chem Eng J 298:125–135

    CAS  Article  Google Scholar 

  5. EU 98/83/ECD (1998) European Commission Directive, Related with Drinking Water Quality Intended for Human Consumption European Commission, Brussels, Belgium

  6. Ezra JC et al (2019) Uranyl functionalization mediated by redox-active ligands: generation of O–C bonds via acylation. J Am Chem Soc 141:1016–1026

    Article  Google Scholar 

  7. Fang Z et al (2020) Conversion of biological solid waste to graphene-containing biochar for water remediation: a critical review. Chem Eng J 390:124611

    CAS  Article  Google Scholar 

  8. Feng N et al (2011) Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. J Hazard Mater 185:49–54

    CAS  Article  Google Scholar 

  9. Garten VA et al (1957) A new interpretation of the acidic and basic structures in carbons. Aust J Chem 10:295–300

    CAS  Article  Google Scholar 

  10. Hashemi B et al (2019) Carbon-based sorbents and their nanocomposites for the enrichment of heavy metal ions: a review. Microchim Acta 186:578–585

    CAS  Article  Google Scholar 

  11. Kaya G, Yaman M (2008) Trace metal concentrations in cupressaceae leaves as biomonitors of environmental pollution. Trace Elem Electrolyte 25(3):156–164

    CAS  Article  Google Scholar 

  12. Kaya G et al (2010) Lead, cadmium and copper concentrations in leaves of Nerium Oleander L. and Robinia Pseudoacacia L. as biomonitors of atmospheric pollution. Fresenius Environ Bull 19(4A):669–675

    CAS  Google Scholar 

  13. Kolpakova M (2014) Thermodynamic calculations of uranium accumulation in saline lakes of West Mongolia. Procedia Earth Planet Sci 10:164–167

    CAS  Article  Google Scholar 

  14. Lemos VA, Gama EM (2010) An online preconcentration system for the determination of uranium in water and influent samples. Environ Monit Assess 171:163–169

    CAS  Article  Google Scholar 

  15. Liu X et al (2017) A valuable biochar from poplar catkins with high adsorption capacity for both organic pollutants and inorganic heavy metal ions. Sci Rep 7:10033. https://doi.org/10.1038/s41598-017-09446-0

    CAS  Article  Google Scholar 

  16. Lu X et al (2017) Synthesis of amidoxime-grafted activated carbon fibers for efficient recovery of uranium(VI) from aqueous solution. Ind Eng Chem Res 56:11936–11947

    CAS  Article  Google Scholar 

  17. Ma D et al (2020) Adsorption of uranium on phosphoric acid-activated peanut shells. Sep Sci Tech 55(9):1623–1635

    CAS  Article  Google Scholar 

  18. Mattson JS et al (1969) Surface chemistry of active carbon: specific adsorption of phenols. J Colloid Interface Sci 31:116–130

    CAS  Article  Google Scholar 

  19. Metilda PJ et al (2004) Influence of binary/ternary complex of imprint ion on the preconcentration of uranium(VI) using ion imprinted polymer materials. Anal Chim Acta 512:63–73

    CAS  Article  Google Scholar 

  20. Metilda PJ et al (2007) Investigation of the role of chelating ligand in the synthesis of ion-imprinted polymeric resins on the selective enrichment of uranium (VI). Anal Chim Acta 587:263–271

    CAS  Article  Google Scholar 

  21. Njoku VO et al (2014) Evaluation of the potentials of three grass plants to remediate crude oil polluted soil. J Environ Chem Eng 2:881–887

    CAS  Article  Google Scholar 

  22. O’Connell DW et al (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99:6709–6724

    Article  Google Scholar 

  23. Oyewo OA et al (2016) Application of banana peels nanosorbent for the removal of radioactive minerals from real mine water. J Environ Radioact 164:369–376

    CAS  Article  Google Scholar 

  24. Ozdemir I et al (2014) Preparation and characterization of activated carbon from grape stalk by zinc chloride activation. Fuel Process Technol 125:200–206

    CAS  Article  Google Scholar 

  25. Picard M et al (2020) Biocarbon from peanut hulls and their green composites with biobased poly(trimethylene terephthalate)(PTT). Sci Rep 10:3310. https://doi.org/10.1038/s41598-020-59582-3

    CAS  Article  Google Scholar 

  26. Qian J et al (2015) Synthesis of surface ion-imprinted magnetic microspheres by locating polymerization for rapid and selective separation of U(VI). RSC Adv 5:4153–4161

    CAS  Article  Google Scholar 

  27. Santos JS, Teixeira LSG, Dos Santos WNL, Lemos VA, Godoy JM, Ferreira SLC (2010) Uranium determination using atomic spectrometric techniques: an overview. Anal Chim Acta 674:143–156. https://doi.org/10.1016/j.aca.2010.06.010

    CAS  Article  Google Scholar 

  28. Singh DK et al (2009) Synthesis and characterization of UO22+-ion imprinted polymer for selective extraction of UO22+. Anal Chim Acta 644:42–47

    CAS  Article  Google Scholar 

  29. US (2009) Environmental Protection Agency, National Primary Drinking Water Regulations, EPA 816-F-09-0004. http://water.epa.gov/drink/contaminants/index.cfm#Inorganic

  30. World Health Organization (2011) 4th ed., WHO, Geneva, pp 430–431

  31. Yaman M (1997) Determination of manganese in vegetables by atomic absorption spectrometry with enrichment using activated carbon. Chem Anal 42(1):79–86

    CAS  Google Scholar 

  32. Yaman M (1998) Simultaneous enrichment of aluminium and lead with cupferron on activated carbon for determination in milk and fruit juices by atomic absorption spectrometry. Mikrochim Acta 129(1–2):115–119

    CAS  Article  Google Scholar 

  33. Yaman M (2000a) Nickel speciation in soil and the relationship with its concentration in fruits. Bull Environ Contam Toxicol 65(4):545–552

    CAS  Article  Google Scholar 

  34. Yaman M (2000b) Speciation of copper in soils and relation with its concentration in fruits. Commun Soil Sci Plant Anal 31(19–20):3205–3215

    CAS  Article  Google Scholar 

  35. Yaman M (2001) Simultaneous enrichment of Cd, Pb, Ni, and Al and their determination in water by STAT-FAAS. Spectrosc Lett 34(6):763–773

    CAS  Article  Google Scholar 

  36. Yaman M, Gucer S (1998) Determination of nickel in vegetable matrices by atomic absorption spectrometry after preconcentration on activated carbon. Annali Di Chimica 88(7–8):555–565

    CAS  Google Scholar 

  37. Yaman M, Dilgin Y (2002) AAS determination of cadmium in fruits and soils. Atomic Spectrosc 23(2):59–64

    CAS  Google Scholar 

  38. Yaman M, Bakirdere S (2003) Identification of chemical forms of lead, cadmium and nickel in sewage sludge of waste water treatment facilities. Microchim Acta 141(1–2):47–54

    CAS  Article  Google Scholar 

  39. Yaman M et al (2011) Distribution study of U, V, Mo, and Zr in different sites of lakes van and hazar, river and seawater samples by ICP-MS. Clean 39:530–536

    CAS  Google Scholar 

  40. Yaman M et al (2015) Sensitive determination of lead, cadmium and nickel in soil, water, vegetable and fruit samples using STAT-FAAS after preconcentration with activated carbon. Toxicol Ind Health 31:881–889

    Article  Google Scholar 

  41. Yi Z, Yao J et al (2018) Removal of uranium(VI) by adsorption onto peanut activated shell carbon powder. IOP Conf Ser 186:012037. https://doi.org/10.1088/1755-1315/186/3/012037

    Article  Google Scholar 

  42. Yue Y et al (2016) A poly(acrylonitrile)-functionalized porous aromatic framework synthesized by atom-transfer radical polymerization for the extraction of uranium from seawater. Ind Eng Chem Res 55:4125–4129

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Scientific Investigate Projects of Firat University, Turkey (Project Number: FF.14.21).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mehmet Yaman.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yaman, M., Demirel, M.H. Synthesis and Characterization of Activated Carbon from Biowaste-Peanut Shell and Application to Preconcentration/Removal of Uranium. Bull Environ Contam Toxicol 106, 385–392 (2021). https://doi.org/10.1007/s00128-020-03065-8

Download citation

Keywords

  • Enrichment
  • Activated carbon
  • Uranium
  • ICPMS
  • Characterization
  • Peanut shells