Skip to main content

Tributyltin Induces the Tissue-Specific Stresses in Zebrafish, a Study in Various Tissues of Muscle, Gill and Intestine

Abstract

Because the mechanism of tissue-specific toxicity of tributyltin (TBT) in aquatic organisms has not been explained clearly, the aim of this study is to investigate the effect of chronic exposure to TBT on muscle-related energy metabolism, gill-related ATPase enzymatic system and intestine-related digestive enzymes activities in zebrafish. Male zebrafish were exposed to sub-lethal concentrations of TBT (10, 100 and 300 ng/L) for 6 weeks. Multiple biomarkers were measured (such as glucose, lactate, hexokinase, pyruvate kinase, lactate dehydrogenase, ATP content, ATPases, trypsin, lipase and amylase), which reflected more serious physiological stress with increasing TBT concentrations during the experimental period. Through principal component analysis (PCA) and integrated biomarker response (IBR) analysis, the toxic effect of TBT in zebrafish was in a concentration-dependent manner. Shortly, the results of this study can provide new evidence for a comprehensive understanding of the toxic effects of TBT.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Ajima MNO, Pandey PK, Kumar K, Poojary N (2018) Alteration in DNA structure, molecular responses and Na+ -K+ -ATPase activities in the gill of Nile tilapia, Oreochromis niloticus (Linnaeus, 1758) in response to sub-lethal verapamil. Ecotoxicol Environ Saf 147:809–816

    CAS  Article  Google Scholar 

  2. Basak T, Varshney S, Akhtar S, Sengupta S (2015) Understanding different facets of cardiovascular diseases based on model systems to human studies: a proteomic and metabolomic perspective. J Proteomics 127:50–60

    CAS  Article  Google Scholar 

  3. Batista RM, Castro IB, Fillmann G (2016) Imposex and butyltin contamination still evident in Chile after TBT global ban. Sci Total Environ 566–567:446–453

    Article  Google Scholar 

  4. Beliaeff B, Burgeot T (2002) Integrated biomarker response: A useful tool for ecological risk assessment. Environ Toxicol Chem 21:1316–1322

    CAS  Article  Google Scholar 

  5. Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein dye binding. Anal Biochem 72:248–254

    CAS  Article  Google Scholar 

  6. Broeg K, Lehtonen KK (2006) Indices for the assessment of environmental pollution of the Baltic Sea coasts: Integrated assessment of a multi-biomarker approach. Mar Pollut Bull 53:508–522

    CAS  Article  Google Scholar 

  7. Cao D, Jiang G, Zhou Q, Yang R (2009) Organotin pollution in China: an overview of the current state and potential health risk. J Environ Manage 90(Suppl 1):S16-24

    CAS  Article  Google Scholar 

  8. Ehrhart F, Roozen S, Verbeek J, Koek G, Kok G, van Kranen H, Evelo CT, Curfs LMG (2019) Review and gap analysis: molecular pathways leading to fetal alcohol spectrum disorders. Mol Psychiatry 24:10–17

    CAS  Article  Google Scholar 

  9. Fu F, Cheng VW, Wu Y, Tang Y, Weiner JH, Li L (2013) Comparative proteomic and metabolomic analysis of Staphylococcus warneri SG1 cultured in the presence and absence of butanol. J Proteome Res 12:4478–4489

    CAS  Article  Google Scholar 

  10. Gosz E, Horbowy J, Ruczynska W, Zietara MS (2011) Enzymatic activities in spermatozoa and butyltin concentrations in Baltic turbot (Scophthalmus maximus). Mar Environ Res 72:188–195

    CAS  Article  Google Scholar 

  11. Iglesias MCA (2020) A review of recent advances and future challenges in freshwater salinization. Limnetica 39:185–211

    Google Scholar 

  12. Li ZH, Zlabek V, Velisek J, Grabic R, Machova J, Randak T (2009) Responses of antioxidant status and Na+-K+-ATPase activity in gill of rainbow trout, Oncorhynchus mykiss, chronically treated with carbamazepine. Chemosphere 77:1476–1481

    CAS  Article  Google Scholar 

  13. Li ZH, Zlabek V, Grabic R, Li P, Machova J, Velisek J, Randak T (2010) Effects of exposure to sublethal propiconazole on intestine-related biochemical responses in rainbow trout, Oncorhynchus mykiss. Chem-Biol Interact 185:241–246

    CAS  Article  Google Scholar 

  14. Li ZH, Zlabek V, Velisek J, Grabic R, Machova J, Randak T (2010) Enzymatic alterations and RNA/DNA ratio in intestine of rainbow trout, Oncorhynchus mykiss, induced by chronic exposure to carbamazepine. Ecotoxicology 19:872–878

    CAS  Article  Google Scholar 

  15. Li ZH, Zlabek V, Turek J, Velisek J, Pulkrabova J, Kolarova J, Sudova E, Berankova P, Hradkova P, Hajslova J, Randak T (2011) Evaluating environmental impact of STPs situated on streams in the Czech Republic: An integrated approach to biomonitoring the aquatic environment. Water Res 45:1403–1413

    CAS  Article  Google Scholar 

  16. Li ZH, Zhong LQ, Mu WN, Wu YH (2016) Alteration of parameters of energy metabolism and ATPase enzymatic system in juvenile common carp (Cyprinus carpio) chronically exposed to tributyltin. Czech J Anim Sci 61:326–332

    CAS  Article  Google Scholar 

  17. Liu ZH, Li YW, Hu W, Chen QL, Shen YJ (2020) Mechanisms involved in tributyltin-enhanced aggressive behaviors and fear responses in male zebrafish. Aquat Toxicol 220:105408

    CAS  Article  Google Scholar 

  18. Martinez-Moya P, Niehaus K, Alcaino J, Baeza M, Cifuentes V (2015) Proteomic and metabolomic analysis of the carotenogenic yeast Xanthophyllomyces dendrorhous using different carbon sources. BMC Genomics 16:289

    Article  Google Scholar 

  19. Meena RM, Garg A, Jadhav S (2009) Seasonal variation in organotins in the waters of the Dona Paula Bay, west coast of India. Bull Environ Contam Toxicol 82:586–589

    CAS  Article  Google Scholar 

  20. Morgan PG, Higdon R, Kolker N, Bauman AT, Ilkayeva O, Newgard CB, Kolker E, Steele LM, Sedensky MM (2015) Comparison of proteomic and metabolomic profiles of mutants of the mitochondrial respiratory chain in Caenorhabditis elegans. Mitochondrion 20:95–102

    CAS  Article  Google Scholar 

  21. Mujahid M, Prasuna ML, Sasikala C, Ramana Ch, V., (2015) Integrated metabolomic and proteomic analysis reveals systemic responses of Rubrivivax benzoatilyticus JA2 to aniline stress. J Proteome Res 14:711–727

    CAS  Article  Google Scholar 

  22. Peterson EK, Schulte BA (2016) Impacts of Pollutants on Beavers and Otters with Implications for Ecosystem Ramifications. J Contemp Wat Res Ed 157:33–45

    Article  Google Scholar 

  23. Sun P, Pavlostathis SG, Huang CH (2014) Photodegradation of veterinary ionophore antibiotics under UV and solar irradiation. Environ Sci Technol 48:13188–13196

    CAS  Article  Google Scholar 

  24. Wang WD, Chen GT, Hsu HJ, Wu CY (2015) Aryl hydrocarbon receptor 2 mediates the toxicity of Paclobutrazol on the digestive system of zebrafish embryos. Aquat Toxicol 159:13–22

    CAS  Article  Google Scholar 

  25. Xie DM, Li YW, Liu ZH, Chen QL (2019) Inhibitory effect of cadmium exposure on digestive activity, antioxidant capacity and immune defense in the intestine of yellow catfish (Pelteobagrus fulvidraco). Comp Biochem Phys C 222:65–73

    CAS  Google Scholar 

  26. Yu Q, Plotto A, Baldwin EA, Bai J, Huang M, Yu Y, Dhaliwal HS, Gmitter FG Jr (2015) Proteomic and metabolomic analyses provide insight into production of volatile and non-volatile flavor components in mandarin hybrid fruit. BMC Plant Biol 15:76

    Article  Google Scholar 

  27. Zhang JL, Sun P, Kong T, Yang F, Guan WC (2016) Tributyltin promoted hepatic steatosis in zebrafish (Danio rerio) and the molecular pathogenesis involved. Aquat Toxicol 170:208–215

    CAS  Article  Google Scholar 

  28. Zhang CN, Zhang JL, Ren HT, Zhou BH, Wu QJ, Sun P (2017) Effect of tributyltin on antioxidant ability and immune responses of zebrafish (Danio rerio). Ecotoxicol Environ Saf 138:1–8

    Article  Google Scholar 

  29. Zhou JS, Guo P, Yu HB, Ji H, Lai ZW, Chen YA (2019) Growth performance, lipid metabolism, and health status of grass carp (Ctenopharyngodon idella) fed three different forms of sodium butyrate. Fish Physiol Biochem 45:287–298

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Hubei Provincial Natural Science Funds for Distinguished Young Scholar, China (No. 2017CFA071), National Key R&D Program of China (2018YFD0900902, 2018YFD0900905), and the Natural Science Foundation of Shandong Province, China (No.ZR2019MC011).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhi-Hua Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, P., Li, ZH. Tributyltin Induces the Tissue-Specific Stresses in Zebrafish, a Study in Various Tissues of Muscle, Gill and Intestine. Bull Environ Contam Toxicol 105, 847–852 (2020). https://doi.org/10.1007/s00128-020-03048-9

Download citation

Keywords

  • Tributyltin
  • Zebrafish
  • Tissue-specific index
  • Statistical analysis