Skip to main content

Arsenite Oxidation by Dunaliella salina is Affected by External Phosphate Concentration

Abstract

Arsenic (As) contamination in terrestrial and aquatic environments is a well-known global environmental problem. The biooxidation of arsenite [As(III)] and subsequent arsenate [As(V)] removal have increasingly been used for remediation of As-polluted groundwater. However, little is known about As(III) oxidation by microalgae, especially those from saltwater environments. In this study, we investigated As(III) toxicity and oxidation in the marine microalga Dunaliella salina in the presence of different phosphate concentrations. The results of the As(III) toxicity experiments showed that D. salina was tolerant to As(III) (5.4 ± 0.31 mg As L−1 at 72 h of culture). The As(V) percentage in the P-enriched (11.2 mg L−1) medium was 7.2-fold greater than in the P-deficient one after 24-h exposure, indicating As(III) oxidation by D. salina was more pronounced with increased phosphate levels. Treatment of As(III) with and without 2,4-dinitrophenol (DNP) on the algal cells showed that As(III) oxidation occurred mainly on the cell surface and in the cytoplasm of D. salina. The results of this study suggest that transformation of As(III) into As(V) may be an important pathway of detoxification in D. salina and that phosphate plays a key role in this oxidation process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Chakraborty P, Jayachandran S, Babu PVR, Karri S, Tyadi P, Yao KM, Sharma BM (2012) Intra-annual variations of arsenic totals and species in tropical estuary surface sediments. Chem Geol 322–323:172–180

    Article  Google Scholar 

  2. Chen H, Jiang JG, Wu GH (2009) Effects of salinity changes on the growth of Dunaliella salina and its isozyme activities of glycerol-3-phosphate dehydrogenase. J Agric Food Chem 57:6178–6182

    CAS  Article  Google Scholar 

  3. Cullen WR, Harrison LG, Li H, Hewitt G (1994) Bioaccumulation and excretion of arsenic compounds by a marine unicellular alga, Polyphysa peniculus. Appl Organomet Chem 8:313–324

    CAS  Article  Google Scholar 

  4. Duquesne K, Lieutaud A, Ratouchniak J, Muller D, Lett MC, Bonnefoy V (2008) Arsenite oxidation by a chemoautotrophic moderately acidophilic Thiomonas sp.: from the strain isolation to the gene study. Environ Microbiol 10:228–237

    CAS  Google Scholar 

  5. Garnier JM, Travassac F, Lenoble V, Rose J, Zheng Y, Hossain MS, Chowdhury SH, Biswas AK, Ahmed KM, Cheng Z, van Geen A (2010) Temporal variations in arsenic uptake by rice plants in Bangladesh: the role of iron plaque in paddy fields irrigated with groundwater. Sci Total Environ 408:4185–4193

  6. Ge Y, Ning Z, Wang Y, Zheng Y, Zhang C, Figeys D (2016) Quantitative proteomic analysis of Dunaliella salina upon acute arsenate exposure. Chemosphere 145:112–118

    CAS  Article  Google Scholar 

  7. Guo Y, Xue X, Yan Y, Zhu Y, Yang G, Ye J (2016) Arsenic methylation by an arsenite S-adenosylmethionine methyltransferase from Spirulina platensis. J Environ Sci (China) 49:162–168

    CAS  Article  Google Scholar 

  8. Hellweger FL, Farley KJ, Lall U, Di Toro DM (2003) Greedy algae reduce arsenate. Limnol Oceanogr 48:2275–2288

    CAS  Article  Google Scholar 

  9. Hirano S, Kobayashi Y, Cui X, Kanno S, Hayakawa T, Shraim A (2004) The accumulation and toxicity of methylated arsenicals in endothelial cells: important roles of thiol compounds. Toxicol Appl Pharmacol 198:458–467

    CAS  Article  Google Scholar 

  10. Hirooka T, Akiyama Y, Tsuji N, Nakamura T, Nagase H, Hirata K, Miyamoto K (2003) Removal of hazardous phenols by microalgae under photoautotrophic conditions. J Biosci Bioeng 95:200–203

    CAS  Article  Google Scholar 

  11. Jiang Y, Purchase D, Jones H, Garelick H (2011) Technical note: effects of arsenate (As5+) on growth and production of glutathione (GSH) and phytochelatins (PCS) in Chlorella vulgaris. Int J Phytoremediat 13:834–844

  12. Karadjova IB, Slaveykova VI, Tsalev DL (2008) The biouptake and toxicity of arsenic species on the green microalga Chlorella salina in seawater. Aquat Toxicol 87:264–271

    CAS  Article  Google Scholar 

  13. Kashyap DR, Botero LM, Franck WL, Hassett DJ, McDermott TR (2006) Complex regulation of arsenite oxidation in Agrobacterium tumefaciens. J Bacteriol 188:1081–1088

    CAS  Article  Google Scholar 

  14. Levy JL, Stauber JL, Adams MS, Maher WA, Kirby JK, Jolley DF (2005) Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae (Chlorella sp and Monoraphidium arcuatum). Environ Toxicol Chem 24:2630–2639

    CAS  Article  Google Scholar 

  15. Li Y, Wang D, Liu Y, Zheng Q, Sun G (2017) A predictive risk model of groundwater arsenic contamination in China applied to the Huai River Basin, with a focus on the region’s cluster of elevated cancer mortalities. Appl Geochem 77:178–183

    CAS  Article  Google Scholar 

  16. Maeda S, Nakashima S, Takeshita T, Higashi S (1985) Bioaccumulation of arsenic by freshwater algae and the application to the removal of inorganic arsenic from an aqueous phase. Part II. By Chlorella vulgaris isolated from arsenic-polluted environment. Sep Sci Technol 20:153–161

    CAS  Article  Google Scholar 

  17. Muller D, Médigue C, Koechler S, Barbe V, Barakat M, Talla E, Bonnefoy V, Krin E, Arsène-Ploetze F, Carapito C (2007) A tale of two oxidation states: bacterial colonization of arsenic-rich environments. PLoS Genet 3:518–530

    CAS  Article  Google Scholar 

  18. Pawlik-Skowrońska B, Pirszel J, Kalinowska R, Skowroński T (2004) Arsenic availability, toxicity and direct role of GSH and phytochelatins in As detoxification in the green alga Stichococcus bacillaris. Aquat Toxicol 70:201–212

    Article  Google Scholar 

  19. Rodríguez-Lado L, Sun G, Berg M, Zhang Q, Xue H, Zheng Q, Johnson CA (2013) Groundwater arsenic contamination throughout China. Science 341:866–868

    Article  Google Scholar 

  20. Shi G, Ma H, Chen Y, Liu H, Song G, Cai Q, Lou L, Rengel Z (2019) Low arsenate influx rate and high phosphorus concentration in wheat (Triticum aestivum L.): a mechanism for arsenate tolerance in wheat plants. Chemosphere 214:94–102

    CAS  Article  Google Scholar 

  21. Smedley P, Kinniburgh D (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    CAS  Article  Google Scholar 

  22. Smedley PL, Zhang M, Zhang G, Luo Z (2003) Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, InnerMongolia. Appl Geochem 18:1453–1477

  23. Wang NX, Li Y, Deng XH, Miao AJ, Ji R, Yang LY (2013) Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes. Water Res 47:2497–2506

    CAS  Article  Google Scholar 

  24. Wang NX, Huang B, Xu S, Wei ZB, Miao AJ, Ji R, Yang LY (2014) Effects of nitrogen and phosphorus on arsenite accumulation, oxidation, and toxicity in Chlamydomonas reinhardtii. Aquat Toxicol 157:167–174

    CAS  Article  Google Scholar 

  25. Wang Y, Wang S, Xu P, Liu C, Liu M, Wang Y, Wang C, Zhang C, Ge Y (2015) Review of arsenic speciation, toxicity and metabolism in microalgae. Rev Environ Sci Bio/Technol 14:427–451

    CAS  Article  Google Scholar 

  26. Wang Y, Zhang CH, Lin MM, Ge Y (2016a) A symbiotic bacterium differentially influences arsenate absorption and transformation in Dunaliella salina under different phosphate regimes. J Hazard Mater 318:443–451

    CAS  Article  Google Scholar 

  27. Wang Y, Zheng Y, Liu C, Xu P, Li H, Lin Q, Zhang C, Ge Y (2016b) Arsenate toxicity and metabolism in the halotolerant microalga Dunaliella salina under various phosphate regimes. Environ Sci Process Impacts 18:735–743

    Article  Google Scholar 

  28. Wang Y, Zhang C, Zheng Y, Ge Y (2017a) Phytochelatin synthesis in Dunaliella salina induced by arsenite and arsenate under various phosphate regimes. Ecotoxicol Environ Saf 136:150–160

    CAS  Article  Google Scholar 

  29. Wang Y, Zhang C, Zheng Y, Ge Y (2017b) Bioaccumulation kinetics of arsenite and arsenate in Dunaliella salina under different phosphate regimes. Environ Sci Pollut Res 24:21213–21221

    CAS  Article  Google Scholar 

  30. Yamaoka Y, Takimura O, Fuse H, Murakami K (1999) Effect of glutathione on arsenic accumulation by Dunaliella salina. Appl Organomet Chem 13:89–94

    CAS  Article  Google Scholar 

  31. Yan C, Wang Z, Luo Z (2014) Arsenic efflux from Microcystis aeruginosa under different phosphate regimes. PLoS One 9:e116099

    Article  Google Scholar 

  32. Yin XX, Wang LH, Bai R, Huang H, Sun GX (2012) Accumulation and transformation of arsenic in the blue-green alga Synechocysis sp. PCC6803. Water Air Soil Pollut 223:1183–1190

    CAS  Article  Google Scholar 

  33. Zhang SY, Sun GX, Yin XX, Rensing C, Zhu YG (2013) Biomethylation and volatilization of arsenic by the marine microalgae Ostreococcus tauri. Chemosphere 93:47–53

    CAS  Article  Google Scholar 

  34. Zhang S, Rensing C, Zhu YG (2014) Cyanobacteria-mediated arsenic redox dynamics is regulated by phosphate in aquatic environments. Environ Sci Technol 48:994–1000

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Grant Nos. 31770548, 41701373).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ying Ge.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 38 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, C., Yu, X. et al. Arsenite Oxidation by Dunaliella salina is Affected by External Phosphate Concentration. Bull Environ Contam Toxicol 105, 868–873 (2020). https://doi.org/10.1007/s00128-020-03045-y

Download citation

Keywords

  • Arsenite oxidation
  • Dunaliella salina
  • Phosphate
  • 2,4-dinitrophenol