Skip to main content

Aerobic Metabolism Impairment in Tambaqui (Colossoma macropomum) Juveniles Exposed to Urban Wastewater in Manaus, Amazon

Abstract

The main purpose of the present study was to investigate the potential use of metabolic parameters as non-specific biomarkers of pollution. The Igarapé do Quarenta is a small urban river crossing an industrial area in the city of Manaus, Amazon, and receives the city wastewater without treatment. The fish tambaqui (Colossoma macropomum) were exposed to water collected from two different sites of that stretch for 96 h. After exposure, routine metabolic rate (RMR) was measured, and fish were euthanized for measurements of electron transport system (ETS) activity, Copper (Cu) and Cadmium (Cd) bioaccumulation and biliary PAHs. Water in the sampling points presented low oxygen and high pH, conductivity, dissolved ions, Cu, Cd and ammonia. Bile concentrations of PAHs were high suggesting industrial pollution. The tambaqui exposed to water from Igarapé do Quarenta showed increased RMR and decreased ETS/RMR suggesting impairment of metabolic fish performance and the potential use of these parameters as biomarkers.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Aride PHR, Roubach R, Val AL (2007) Tolerance response of tambaqui Colossoma macropomum (Cuvier) to water pH. Aquac Res 38:588–594. https://doi.org/10.1111/j.1365-2109.2007.01693.x

    CAS  Article  Google Scholar 

  2. Azambuja CR, Mattiazzi J, Riffel APK et al (2011) Effect of the essential oil of Lippia alba on oxidative stress parameters in silver catfish (Rhamdia quelen) subjected to transport. Aquaculture 319:156–161. https://doi.org/10.1016/j.aquaculture.2011.06.002

    CAS  Article  Google Scholar 

  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Annu Biochem 72:248–251

    CAS  Article  Google Scholar 

  4. Campos DF, Braz-Mota S, Val AL, Almeida-Val VMF (2019) Predicting thermal sensitivity of three Amazon fishes exposed to climate change scenarios. Ecol Indic 101:533–540. https://doi.org/10.1016/j.ecolind.2019.01.051

    CAS  Article  Google Scholar 

  5. Clesceri LS, Greenberg AE, Trussell RR (1989) Standards methods for the examination of water and wastewater. DHAAWWA-WPCK, Washington

    Google Scholar 

  6. CONAMA (2005) Resolução n° 357 do Conselho Nacional de Meio Ambiente. Brasília, Brasil

    Google Scholar 

  7. de Melo MG, da Silva BA, Costa GS et al (2019) Sewage contamination of Amazon streams crossing Manaus (Brazil). Environ Pollut 244:818–826. https://doi.org/10.1016/j.envpol.2018.10.055

    CAS  Article  Google Scholar 

  8. de Melo MG, de Castro LG, Reis LA et al (2020) Metals, n-Alkanes, hopanes, and polycyclic aromatic hydrocarbon in sediments from three Amazonian streams crossing Manaus (Brazil). Chemistry (Easton) 2:274–292. https://doi.org/10.3390/chemistry2020018

    Article  Google Scholar 

  9. Di Toro DM, Allen HE, Bergman HL et al (2001) Biotic ligand model of the acute toxicity of metals. 1 Technical basis Environ. Toxicol Chem 20:2383–2396

    Article  Google Scholar 

  10. Dinesh B, Ramesh M, Poopal RK (2013) Effect of ammonia on the electrolyte status of an Indian major carp Catla catla. Aquac Res 44:1677–1684. https://doi.org/10.1111/j.1365-2109.2012.03172.x

    CAS  Article  Google Scholar 

  11. Duarte RM, Menezes ACL, da Rodrigues L et al (2009) Copper sensitivity of wild ornamental fish of the Amazon. Ecotoxicol Environ Saf 72:693–698. https://doi.org/10.1016/j.ecoenv.2008.10.003

    CAS  Article  Google Scholar 

  12. Erickson RJ, Benoit DA, Mattson VR et al (1996) The effects of water chemistry on the toxicity of copper to fathead minnows. Environ Toxicol Chem 15:181–193

    CAS  Article  Google Scholar 

  13. González SO, Almeida CA, Calderón M (2014) Assessment of the water self-purification capacity on a river affected by organic pollution: application of chemometrics in spatial and temporal variations. Environ Sci Pollut Res 21:10583–10593. https://doi.org/10.1007/s11356-014-3098-y

    CAS  Article  Google Scholar 

  14. Hargeby A (1990) Effects of pH, humic substances and animal interactions on survival and physiological status of Asellus aquaticus L. and Gammarus pulex (L.) A field experiment. Oecologia 82:348–354

    Article  Google Scholar 

  15. Heijerick DG, De SKAC, Janssen CR (2002) Biotic ligand model development predicting Zn toxicity to the alga Pseudokirchneriella subcapitata: possibilities and limitations. Comput Biochem Physiol C 133:207–218

    CAS  Google Scholar 

  16. Howsam M, Jones KC (1998) Sources of PAHs in the environment. In: Neilson AH (ed) PAHs and related compounds. Springer, Berlin

    Google Scholar 

  17. Jordanova M, Hristovski S, Musai M et al (2018) Accumulation of heavy metals in some organs in barbel and chub from Crn Drim River in the Republic of Macedonia. Bull Environ Contam Toxicol 101:392–397. https://doi.org/10.1007/s00128-018-2409-2

    CAS  Article  Google Scholar 

  18. Kenner RA, Ahmed SI (1975) Measurements of electron transport activities in marine phytoplankton. Mar Biol 33:119–127

    CAS  Article  Google Scholar 

  19. Kochhann D, Campos DF, Val AL (2015) Experimentally increased temperature and hypoxia affect stability of social hierarchy and metabolism of the Amazonian cichlid Apistogramma agassizii. Comp Biochem Physiol A 190:54–60. https://doi.org/10.1016/j.cbpa.2015.09.006

    CAS  Article  Google Scholar 

  20. Kochhann D, De Azevedo Brust SM, Domingos FXV, Val AL (2013) Linking hematological, biochemical, genotoxic, and behavioral responses to crude oil in the Amazon fish Colossoma macropomum (cuvier, 1816). Arch Environ Contam Toxicol 65(2):266–275. https://doi.org/10.1007/s00244-013-9894-4

    CAS  Article  Google Scholar 

  21. Krahn MM, Rhodes LD, Myers MS et al (1986) Associations between metabolites of aromatic compounds in bile and the occurrence of hepatic lesions in english sole (Parophrys vetulus) from Puget Sound, Washington. Arch Environ Contam Toxicol 15:61–67

    CAS  Article  Google Scholar 

  22. Lampert W (1984) The measurement of respiration. In: Downing J, Rigler F (eds) A manual on methods for the assessment of secondary productivity in fresh water, 2nd edn. Blackwell Sci Publ, Oxford, pp 413–468

    Google Scholar 

  23. Lavarías S, Ocon C, Van OVL et al (2017) Multibiomarker responses in aquatic insect Belostoma elegans (Hemiptera) to organic pollution in freshwater system. Environ Sci Pollut Res 24:1322–1337. https://doi.org/10.1007/s11356-016-7493-4

    CAS  Article  Google Scholar 

  24. Lee RF, Anderson JW (2005) Significance of cytochrome P450 system responses and levels of bile fluorescent aromatic compounds in marine wildlife following oil spills. Mar Pollut Bull 50:705–723. https://doi.org/10.1016/j.marpolbul.2005.04.036

    CAS  Article  Google Scholar 

  25. Lin ELC, Cormier SM, Torsella JA (1996) Fish biliary polycyclic aromatic hydrocarbon metabolites estimated by fixed-wavelength fluorescence: comparison. Ecotoxicol Environ Saf 35:16–23

    CAS  Article  Google Scholar 

  26. Lukancic S, Zibrat U, Mezek T et al (2010) Effects of exposing two non-target crustacean species, Asellus aquaticus L., and Gammarus fossarum Koch., to atrazine and imidacloprid. Bull Environ Contam Toxicol 84:85–90. https://doi.org/10.1007/s00128-009-9854-x

    CAS  Article  Google Scholar 

  27. Maltby L (1995) Sensitivity of the crustaceans Gammarus pulex (L.) and Asellus aquaticus (L.) to short-term exposure to hypoxia and unionized ammonia: observations and possible mechanisms. Water Res 29:781–787

    CAS  Article  Google Scholar 

  28. Matsuo AYO, Wood CM, Val AL (2005) Effects of copper and cadmium on ion transport and gill metal binding in the Amazonian teleost tambaqui (Colossoma macropomum) in extremely soft water. Aquat Toxicol 74:351–364. https://doi.org/10.1016/j.aquatox.2005.06.008

    CAS  Article  Google Scholar 

  29. Mckenzie DJ, Garofalo E, Winter MJ et al (2007) Complex physiological traits as biomarkers of the sub-lethal toxicological effects of pollutant exposure in fishes. Philos Trans R Soc B 362:2043–2059. https://doi.org/10.1098/rstb.2007.2100

    CAS  Article  Google Scholar 

  30. Muskó I, Tóth G, Szábo E (1995) Respiration and respiratory electron transport system (ETS) activity of two amphipods: Corophium curvispinum G. O. Sars and Gammarus fossarum Koch. Polish Arch Hydrobiol 42:547–558

    Google Scholar 

  31. Naylor C, Pindar L, Calow P (1990) Inter and intraspecific variation in sensitivuty to toxins; the effects of acidity and zinc on the freshwater crustaceans Asellus aquaticus (L.) and Gammarus pulex (L.). Water Res 24:757–762

    CAS  Article  Google Scholar 

  32. Oliveira C, Almeida JR, Guilhermino L et al (2013) Swimming velocity, avoidance behavior and biomarkers in Palaemon serratus exposed to fenitrothion. Chemosphere 90:936–944. https://doi.org/10.1016/j.chemosphere.2012.06.036

    CAS  Article  Google Scholar 

  33. Oost D, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149

    Article  Google Scholar 

  34. Owens TG, King FD (1975) The measurement of respiratory electron transport system activity in marine zooplankton. Mar Biol 30:27–36

    Article  Google Scholar 

  35. Packard T (1971) The measurement of respiratory electron-transport activity in marine phytoplankton. J Mar Res 29:235–244

    Google Scholar 

  36. Pereira P, De PH, Vale C, Pacheco M (2010) Combined use of environmental data and biomarkers in fish (Liza aurata) inhabiting a eutrophic and metal-contaminated coastal system – Gills reflect environmental contamination. Mar Environ Res 69:53–62. https://doi.org/10.1016/j.marenvres.2009.08.003

    CAS  Article  Google Scholar 

  37. Petala M, Kokokiris L, Samaras P et al (2009) Toxicological and ecotoxic impact of secondary and tertiary treated sewage effluents. Water Res 43:5063–5074. https://doi.org/10.1016/j.watres.2009.08.043

    CAS  Article  Google Scholar 

  38. Piazza C, Mattos J, Toledo-Silva G et al (2019) Transcriptional e ff ects in the estuarine guppy Poecilia vivipara exposed to sanitary sewage in laboratory and in situ. Ecotoxicol Environ Saf 182:109411. https://doi.org/10.1016/j.ecoenv.2019.109411

    CAS  Article  Google Scholar 

  39. Pont GD, Xochilt F, Domingos V et al (2017) Potential of the biotic ligand Mmdel (BLM) to predict copper toxicity in the white-water of the Solimões-Amazon River. Bull Environ Contam Toxicol 98:27–32. https://doi.org/10.1007/s00128-016-1986-1

    CAS  Article  Google Scholar 

  40. Radic S, Stipanicev D, Cvjetko P et al (2011) Ecotoxicology and Environmental Safety Duckweed Lemna minor as a tool for testing toxicity and genotoxicity of surface waters. Ecotoxicol Environ Saf 74:182–187. https://doi.org/10.1016/j.ecoenv.2010.06.011

    CAS  Article  Google Scholar 

  41. Rice JA (1990) Bioenergetics modeling approaches to evaluation of stress in fishes. Am Fish Soc Symp 8:80–92

    Google Scholar 

  42. Santana GP (2015) Sediment-distributed metal from the Manaus Industrial District (MID) Region (AM – Brazil). J Chem Eng Chem 1:55–64

    Article  Google Scholar 

  43. Scott DM, Wilson RW (2007) Three species of fishes from an eutrophic, seasonally alkaline lake are not more tolerant to acute exposure to high pH in the laboratory. J Fish Biol 70:551–566

    CAS  Article  Google Scholar 

  44. Shrestha S, Kazama F (2007) Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river basin, Japan. Environ Model Softw 22:464–475. https://doi.org/10.1016/j.envsoft.2006.02.001

    Article  Google Scholar 

  45. Simčič T, Brancelj A (2003) Estimation of the proportion of metabolically active mass in the amphipod Gammarus fossarum. Freshw Biol 48:1093–1099

    Article  Google Scholar 

  46. Simčič T, Jesenšek D, Brancelj A (2015) Effects of increased temperature on metabolic activity and oxidative stress in the first life stages of marble trout (Salmo marmoratus). Fish Physiol Biochem 41:1005–1014. https://doi.org/10.1007/s10695-015-0065-6

    CAS  Article  Google Scholar 

  47. Sinaei M, Rahmanpour S (2013) Evaluation of glutathione S-transferase activity as a biomarker of PAH pollution in mudskipper, Boleophthalmus dussumieri, Persian Gulf. Bull Environ Contam Toxicol 90:369–374. https://doi.org/10.1007/s00128-012-0917-z

    CAS  Article  Google Scholar 

  48. Sioli H (1985) Amazônia: fundamentos da ecologia da maior região de florestas tropicais. Editora Vozes, Petrópolis

    Google Scholar 

  49. WHO (1996) Guidelines for drinking-water quality: health criteria and other supporting information. WHO, Geneva

    Google Scholar 

  50. Wilkie MP, Wood CM (1995) Recovery from high pH exposure in the rainbow trout: white muscle ammonia storage, ammonia washout, and the restoration of blood chemistry. Physiol Zool 68:379–401

    CAS  Article  Google Scholar 

  51. Wood CM, Robertson LM, Johansson OA, Val AL (2014) Mechanisms of Na+ uptake, ammonia excretion, and their potential linkage in native Rio Negro tetras (Paracheirodon axelrodi, Hemigrammus rhodostomus, and Moenkhausia diktyota). J Comp Physiol B 184:877–890

    CAS  Article  Google Scholar 

  52. Wood CM, de Souza Netto JG, Wilson JM, Duarte RM, Val AL (2017) Nitrogen metabolism in tambaqui (Colossoma macropomum), a neotropical model teleost: hypoxia, temperature, exercise, feeding, fasting, and high environmental ammonia. J Comp Physiol B 187(1):135–151. https://doi.org/10.1007/s00360-016-1027-8

    CAS  Article  Google Scholar 

  53. Zall DM, Fisher D, Garner MD (1956) Photometric determination of chlorides in water. Anal Chem 28:1665–1678

    CAS  Article  Google Scholar 

  54. Zuloaga O, Prieto A, Usobiaga A et al (2009) Polycyclic aromatic hydrocarbons in intertidal marine bivalves of sunderban mangrove Wetland, India: An approach to bioindicator species. Water Air Soil Pollut 201:305–318. https://doi.org/10.1007/s11270-008-9946-y

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was funded by a joint grant from the Brazilian National Research Council (CNPq, 465540/2014-7), the Amazonas State Research Foundation (FAPEAM, 062.01187/2017) and Coordination for the Improvement of Higher Education Personnel (CAPES, finance code 001) to ALV (INCT ADAPTA). ALV is the recipient of a research fellowship from the CNPq. RPJ was the recipient of a MSc fellowship from FAPEAM. Authors also would like to thank to the technicians Reginaldo Oliveira and Rogério Pereira for all logistical support. Thanks are due to Maria de Nazaré Paula da Silva for laboratory support and Jennifer Chung for English revision.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daiani Kochhann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jacaúna, R.P., Kochhann, D., Campos, D.F. et al. Aerobic Metabolism Impairment in Tambaqui (Colossoma macropomum) Juveniles Exposed to Urban Wastewater in Manaus, Amazon. Bull Environ Contam Toxicol 105, 853–859 (2020). https://doi.org/10.1007/s00128-020-03041-2

Download citation

Keywords

  • Biomarkers
  • Pollution
  • Resting metabolic rate
  • Biliary metabolites
  • Bioaccumulation
  • Metabolic stress