Skip to main content

Metagenomic Analysis Revealed that the Terrestrial Pollutants Override the Effects of Seasonal Variation on Microbiome in River Sediments

Abstract

Researching the structure and function of sediment microbiome contribute to understanding the response of microbiome to external disturbances. However, seasonal changes in sediment microbiome with different terrestrial pollutants input have not yet been clearly understood. Metagenomic sequencing was used to evaluate the effects of seasonal variations and different land use types on sediment microbiome. Results showed that the differences in structure and functions of sediment microbiome among different land use types were obviously greater than different seasons. This indicated that the terrestrial pollutants weakened the effects of seasonal variations on shaping the sediment microbiome. The significant differences in sediment properties under the input of different terrestrial pollutants was observed, but no obvious differences between seasons, which may be the reason why terrestrial pollutants override the effects of seasonal variation on the sediment microbiome. Overall, the results extended our understanding of the impacts of seasonal variation and terrestrial pollutants on river sediment microbiome.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abia ALK, Alisoltani A, Keshri J et al (2017) Metagenomic analysis of the bacterial communities and their functional profiles in water and sediments of the Apies River, South Africa, as a function of land use. Sci Total Environ 616–617:326–334

    Google Scholar 

  2. Anne D, Bodelier PLE, Zheng Y et al (2014) Interactions between Thaumarchaea, Nitrospira and methanotrophs modulate autotrophic nitrification in volcanic grassland soil. ISME J 8:2397–2410

    Article  Google Scholar 

  3. Campbell BJ, Kirchman DL (2013) Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. ISME J 7:210–220

    CAS  Article  Google Scholar 

  4. Chen H, Zhang M (2013) Occurrence and removal of antibiotic resistance genes in municipal wastewater and rural domestic sewage treatment systems in eastern China. Environ Int 55C:9–14

    Article  Google Scholar 

  5. Chen H, Bai X, Jing L et al (2019) Characterization of antibiotic resistance genes in the sediments of an urban river revealed by comparative metagenomics analysis. Sci Total Environ 653:1513–1521

    CAS  Article  Google Scholar 

  6. Collier JL, Lovindeer R, Xi Y et al (2012) Differences in growth and physiology of marine synechococcus (cyanobacteria) on nitrate versus ammonium are not determined solely by nitrogen source redox state. J Phycol 48:106–116

    CAS  Article  Google Scholar 

  7. Du X, Crawford DL, Oleksiak MF (2015) Effects of anthropogenic pollution on the oxidative phosphorylation. Aquat Toxicol 165:231–240

    CAS  Article  Google Scholar 

  8. Gough HL, Stahl DA (2011) Microbial community structures in anoxic freshwater lake sediment along a metal contamination gradient. ISME J 5:543–558

    Article  Google Scholar 

  9. He Z, Huang R, Liang Y et al (2018) Index for nitrate dosage calculation on sediment odor control using nitrate-dependent ferrous and sulfide oxidation interactions. J Environ Manag 226:289–297

    CAS  Article  Google Scholar 

  10. Ibekwe AM, Ma J, Murinda SE (2016) Bacterial community composition and structure in an Urban River impacted by different pollutant sources. Sci Total Environ 566–567:1176–1185

    Article  Google Scholar 

  11. JiyaJose, Giridhar R, Anas A et al (2011) Heavy metal pollution exerts reduction/adaptation in the diversity and enzyme expression profile of heterotrophic bacteria in Cochin estuary, India. Environ Pollut 159:2775–2780

    Article  Google Scholar 

  12. Lee CK, Barbier BA, Bottos EM et al (2012) The inter-valley soil comparative survey: the ecology of dry valley edaphic microbial communities. ISME J 6:1046–1057

    CAS  Article  Google Scholar 

  13. Li W, Zhang S, Zhang L et al (2019) In-situ remediation of sediment by calcium nitrate combined with composite microorganisms under low-DO regulation. Sci Total Environ 697:134109

    CAS  Article  Google Scholar 

  14. Li C, Quan Q, Gan Y et al (2020a) Effects of heavy metals on microbial communities in sediments and establishment of bioindicators based on microbial taxa and function for environmental monitoring and management. Sci Total Environ 749:141555

    CAS  Article  Google Scholar 

  15. Li F, Kong Q, Zhang Q et al (2020b) Spent mushroom substrates affect soil humus composition, microbial biomass and functional diversity in paddy fields. Appl Soil Ecol 149:103489

    Article  Google Scholar 

  16. Li X, Qiao J, Li S et al (2020c) Bacterial communities and functional genes stimulated during anaerobic arsenite oxidation and nitrate reduction in a paddy soil. Environ Sci Technol 54:2172–2181

    CAS  Article  Google Scholar 

  17. Liu Z, Huang S, Sun G et al (2012) Phylogenetic diversity, composition and distribution of bacterioplankton community in the Dongjiang River, China. FEMS Microbiol Ecol 80:30–44

    CAS  Article  Google Scholar 

  18. Liu J, Chen X, Shu HY et al (2018) Microbial community structure and function in sediments from e-waste contaminated rivers at Guiyu area of China. Environmental Pollution 235:171–179

    CAS  Article  Google Scholar 

  19. Luo Z, Shao Q, Zuo Q et al (2020) Impact of land use and urbanization on river water quality and ecology in a dam dominated basin. Ecotoxicol Environ Saf 584:124655

    Google Scholar 

  20. Maadheed S, Goktepe I, Latiff ABA et al (2019) Antibiotics in hospital effluent and domestic wastewater treatment plants in Doha, Qatar. J Water Process Eng 28:60–68

    Article  Google Scholar 

  21. Pan X, Guo Y et al (2019) Characteristics of microbial community indicate anthropogenic impact on the sediments along the Yangtze Estuary and its coastal area, China. Sci Total Environ 648:306–314

    Article  Google Scholar 

  22. Perkins TL, Katie C, Baas JH et al (2014) Sediment composition influences spatial variation in the abundance of human pathogen indicator bacteria within an estuarine environment. PLoS ONE 9:e112951

    Article  Google Scholar 

  23. Reed HE, Martiny JB (2013) Microbial composition affects the functioning of estuarine sediments. ISME J 7:868–879

    CAS  Article  Google Scholar 

  24. Ruban V, López-Sánchez JF, Pardo P et al (2001) Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments—a synthesis of recent works. Fresen J Anal Chem 370:224–228

    CAS  Article  Google Scholar 

  25. Sanford RA, Cole JR, Tiedje JM (2002) Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl Environ Microbiol 68:893–900

    CAS  Article  Google Scholar 

  26. Soo R, Hemp J, Hugenholtz P (2019) Evolution of photosynthesis and aerobic respiration in the cyanobacteria. Free Radic Biol Med 140:200–205

    CAS  Article  Google Scholar 

  27. Treude N, Rosencrantz D, Liesack W et al (2008) Strain FAc12, a dissimilatory iron-reducing member of the Anaeromyxobacter subgroup of Myxococcales. FEMS Microbiol Ecol 44:261–269

    Article  Google Scholar 

  28. Xie Y, Wang J, Wu Y et al (2016) Using in situ bacterial communities to monitor contaminants in river sediments. Environ Pollut 212:348–357

    CAS  Article  Google Scholar 

  29. Yan C, Wang F, Geng H et al (2020) Integrating high-throughput sequencing and metagenome analysis to reveal the characteristic and resistance mechanism of microbial community in metal contaminated sediments. Sci Total Environ 707:136116

    CAS  Article  Google Scholar 

  30. Yu C, Huang X, Chen H et al (2019) Managing nitrogen to restore water quality in China. Nature 567:516–520

    CAS  Article  Google Scholar 

  31. Zhang H, Wan Z, Ding M et al (2018) Inherent bacterial community response to multiple heavy metals in sediment from river-lake systems in the Poyang Lake, China. Ecotoxicol Environ Saf 165:314–324

    CAS  Article  Google Scholar 

  32. Zhang M, Pan L, Huang F et al (2019) Metagenomic analysis of composition, function and cycling processes of microbial community in water, sediment and effluent of Litopenaeus vannamei farming environments under different culture modes. Aquaculture 506:280–293

    Article  Google Scholar 

  33. Zhang S, Hu Z, Wang H (2019b) Metagenomic analysis exhibited the co-metabolism of polycyclic aromatic hydrocarbons by bacterial community from estuarine sediment. Environ Int 129:308–319

    CAS  Article  Google Scholar 

  34. Zoppini A, Amalfitano S, Fazi S et al (2010) Dynamics of a benthic microbial community in a riverine environment subject to hydrological fluctuations (Mulargia River, Italy). Hydrobiologia 657:37–51

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the Major Science and Technology Program for Water Pollution Control and Treatment (2017ZX07602-002) supporting this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xin Leng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 750 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qiu, H., Gu, L., Sun, B. et al. Metagenomic Analysis Revealed that the Terrestrial Pollutants Override the Effects of Seasonal Variation on Microbiome in River Sediments. Bull Environ Contam Toxicol 105, 892–898 (2020). https://doi.org/10.1007/s00128-020-03033-2

Download citation

Keywords

  • Sediment
  • Metagenomics
  • Microbiome
  • Functions
  • Seasonal variation
  • Terrestrial pollutants