Skip to main content

Effects on Ultrastructure, Composition and Specific Surface Area of the Gills of Odontesthes bonariensis Under Subchronic Glyphosate-Based Herbicide Exposure

Abstract

Gills represent one of the major sites of gas exchange of fish, consequently they are in continuous close contact with the aquatic environment and its pollutants. In the present study the effects on gills of pejerrey fish, Odontesthes bonariensis, under glyphosate-based herbicide subchronic exposure were analyzed. Adult animals were exposed to sublethal concentrations of a glyphosate-based commercial formulation (1 and 10 PMG mg L−1, PMG: glyphosate active ingredient) for 15 days, while control group was maintained in rearing water. Ultrastructural changes in gills were observed by scanning electron microscopy (SEM). The composition of the surface epithelium and specific surface area were determined by energy dispersive spectroscopy (EDS) and N2 (g) adsorption–desorption isotherms, respectively. The herbicide exposure induced severe alterations in gill ultrastructure, as shown in the SEM micrographs. Accordingly, an increase in surface area of the gills of exposed animals was determined. These results support that gills parameters of freshwater fish are sensitive morphological biomarkers for glyphosate exposure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Anderson TF (1951) Techniques for the preservation of three-dimensional structure in preparing specimens for the electron microscope. Trans NY Acad Sci 13(4(Series II)):130–134

    Article  Google Scholar 

  2. Berasain GE, Colautti DC, Remes-Lenicov M, Argemi F, Bohn VV, Miranda LA (2015) Impact of water salinity on pejerrey (Odontesthes bonariensis) fisheries in Chasicó Lake. Hydrobiologia 752:167–174

    CAS  Article  Google Scholar 

  3. Carriquiriborde P (2010) Toxicidad de glifosato en peces autóctonos: Estudios de laboratorio y campo. In: Camino M, Aparicio V (eds) Aspectos ambientales del uso del glifosato. Ediciones INTA, pp 53–64

  4. Carriquiriborde P, Ronco A (2006) Ecotoxicological studies on the pejerrey (Odontesthes bonariensis, Pisces Atherinopsidae). Biocell 30:97–109

    Google Scholar 

  5. CASAFE (2015) Cámara de Sanidad Agropecuaria y Fertilizantes. https://www.casafe.org/pdf/2018/ESTADISTICAS/Informe-Mercado-Fitosanitarios-2014.pdf

  6. Cavalcante DGSM, Martinez CBR, Sofia SH (2008) Genotoxic effects of Roundup® on the fish Prochilodus lineatus. Mutat Res Genet Toxicol Environ Mutagen 655(1–2):41–46

    CAS  Article  Google Scholar 

  7. Dyer HBS (2006) Systematic revision of the South American silversides (Teleostei, Atheriniformes). Biocell 30:69–88

    Google Scholar 

  8. Ferrari L, Eissa BL, Ossana NO, Salibián A (2009) Effects of sublethal waterborne cadmium on gills in three teleosteans species: scanning electron microscope study. Int J Environ Health 3(4):410–426

    CAS  Article  Google Scholar 

  9. Folmar LC, Sanders HO, Julin AM (1979) Toxicity of the herbicide glyphosate and several of its formulations to fish and aquatic invertebrates. Arch Environ Contam Toxicol 8:269–278

    CAS  Article  Google Scholar 

  10. Food and Agriculture Organization, FAO (2018). http://www.fao.org/faostat/en/#data/RP

  11. Hued AC, Oberhofer S, Bistoni MA (2012) Exposure to a commercial glyphosate formulation (Roundup®) alters normal gill and liver histology and affects male sexual activity of Jenynsia multidentata (Anablepidae, Cyprinodontiformes). Arch Environ Contam Toxicol 62(1):107–117

    CAS  Article  Google Scholar 

  12. Jiraungkoorskul W, Upatham ES, Kruatrachue M, Sahaphong S, Vichasri-Grams S, Pokethitiyook P (2003) Biochemical and histopathological effects of glyphosate herbicide on Nile tilapia (Oreochromis niloticus). Environ Toxicol 18:260–267

    CAS  Article  Google Scholar 

  13. Lowell S, Shields J, Thomas MA, Thommes M (2004) Characterization of porous solids and powders: surface area, pore size and density. Springer, Dordrecht

    Book  Google Scholar 

  14. Mac Loughlin TM, Peluso ML, Aparicio VC, Marino DJ (2020) Contribution of soluble and particulate-matter fractions to the total glyphosate and AMPA load in water bodies associated with horticulture. Sci Total Environ 703:134717

    CAS  Article  Google Scholar 

  15. MAGyP M, de Agricultura, Ganadería y Pesca (2018). Agricultura - Estimaciones agrícolas. https://datos.magyp.gob.ar/dataset?q=superficie+sembrada

  16. Menéndez-Helman RJ, Ferreyroa GV, dos Santos Afonso M, Salibián A (2012) Glyphosate as an acetylcholinesterase inhibitor in Cnesterodon decemmaculatus. Bull Environ Contam Toxicol 88:6–9

    Article  Google Scholar 

  17. Menéndez-Helman RJ, Miranda LA, dos Santos Afonso M, Salibián A (2015) Subcellular energy balance of Odontesthes bonariensis exposed to a glyphosate-based herbicide. Ecotoxicol Environ Saf 114:157–163

    Article  Google Scholar 

  18. Menéndez-Helman RJ, Salibián A, dos Santos Afonso M (2013) Lethal and sublethal glyphosate effects on non-target fish species. Biomarkers responses in Cnesterodon decemmaculatus. In: Kobayashi D, Watanabe E (eds) Handbook on herbicides: biological activity, classification and health and environmental implications. Nova Publishers, Inc., New York, pp 85–110

    Google Scholar 

  19. Nešković NK, Poleksić V, Elezović I, Karan V, Budimir M (1996) Biochemical and histopathological effects of glyphosate on carp, Cyprinus carpio. Bull Environ Contam Toxicol 56:295–302

    Article  Google Scholar 

  20. Pérez GL, Vera MS, Miranda LA (2011) Effects of herbicide glyphosate and glyphosate-based formulations on aquatic ecosystems. In: Andreas K (ed) Herbicides and environment. InTech, Chascomus, pp 343–368

    Google Scholar 

  21. Peruzzo PJ, Porta AA, Ronco AE (2008) Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in North Pampasic region of Argentina. Environ Pollut 156:61–66

    CAS  Article  Google Scholar 

  22. Primost JE, Marino DJ, Aparicio VC, Costa JL, Carriquiriborde P (2017) Glyphosate and AMPA, “pseudo-persistent” pollutants under real-world agricultural management practices in the Mesopotamic Pampas agroecosystem, Argentina. Environ Pollut 229:771–779

    CAS  Article  Google Scholar 

  23. Ronco AE (2011) Impacto de Plaguicidas en ambientes acuáticos pampeanos: Integración de estudios químico ecotoxicológicos en experimentos de campo y laboratorio, con especial énfasis en el glifosato. In: Camino M, Aparicio V (eds) Aspectos ambientales del uso del glifosato. Ediciones INTA, pp 85–94

  24. Samanta P, Mukherjee AK, Pal S, Kole D, Ghosh AR (2016) Toxic effects of glyphosate-based herbicide, Excel Mera 71 on gill, liver, and kidney of Heteropneustes fossilis under laboratory and field conditions. J Microsc Ultrastruct 4(3):147–155

    Article  Google Scholar 

  25. Samanta P, Kumari P, Pal S, Mukherjee AK, Ghosh AR (2018a) Histopathological and ultrastructural alterations in some organs of Oreochromis niloticus exposed to glyphosate-based herbicide, Excel Mera 71. J Microsc Ultrastruct 6(1):35–43

    Article  Google Scholar 

  26. Samanta P, Pal S, Senapati T, Mukherjee AK, Ghosh AR (2018b) Assessment of adverse outcome of Excel Mera 71 in Anabas testudineus by histological and ultrastructural alterations. Aquat Toxicol 205:19–24

    CAS  Article  Google Scholar 

  27. Senapati T, Mukerjee AK, Ghosh AR (2009) Observations on the effect of glyphosate based herbicide on ultra structure (SEM) and enzymatic activity in different regions of alimentary canal and gill of Channa punctatus (Bloch). J Crop Weed 5(1):236–245

    Google Scholar 

  28. Somoza GM, Miranda LA, Berasain GE, Colautti D, Remes Lenicov M, Strüssmann CA (2008) Historical aspects, current status and prospects of pejerrey aquaculture in South America. Aquac Res 39:784–793

    Article  Google Scholar 

  29. Tano de la Hoz MF, Longo MV, Escalante AH, Díaz AO (2014) Surface ultrastructure of the gills of Odontesthes bonariensis (Valenciennes, 1835) (Teleostei: Atheriniformes) from a temperate shallow lake. Int J Morphol 32(4):1341–1346

    Article  Google Scholar 

  30. Vigliano FA, Aleman N, Quiroga MI, Nieto JM (2006) Ultrastructural characterization of gills in juveniles of the Argentinian Silverside, Odontesthes bonariensis (Valenciennes, 1835) (Teleostei: Atheriniformes). Anat Histol Embryol 35(2):76–83

    CAS  Article  Google Scholar 

  31. World Health Organization, WHO (1994) Glyphosate. Environmental Health Criteria 159. WHO, Geneva

    Google Scholar 

  32. Zhu Y, Zhang F, Tong C, Liu W (1999) Determination of glyphosate by ion chromatography. J Chromatogr A 850:297–301

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Grants from Universidad de Buenos Aires (UBACyT 20020100100750) and Agencia Nacional de Promoción Científica y Tecnológica, Argentina (PICT 2017-2506). The authors appreciate the contribution of Lic. Fabián Tricárico, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, in the initial phases of the study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to María dos Santos Afonso.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Menéndez-Helman, R.J., Miranda, L.A., Salibián, A. et al. Effects on Ultrastructure, Composition and Specific Surface Area of the Gills of Odontesthes bonariensis Under Subchronic Glyphosate-Based Herbicide Exposure. Bull Environ Contam Toxicol 105, 835–840 (2020). https://doi.org/10.1007/s00128-020-03031-4

Download citation

Keywords

  • Glyphosate-based herbicide
  • Gill ultrastructure
  • SEM
  • Specific surface area
  • Pejerrey fish Odontesthes bonariensis