Skip to main content

Reducible Fraction Dominates the Mobility of Vanadium in Soil Around an Iron Smelter

Abstract

Soil samples were collected to determine the pollution status, spatial distribution and mobility of Vanadium (V) in soil around an iron smelter in Panzhihua. The results showed that the topsoils and deep soils were unpolluted to moderately polluted and the subsurface soils was unpolluted with V. V concentrations in the topsoils decreased with the increase of the altitudes and the distances to the smelter. There was a great potential mobility of V in soil and the reductive dissolution of reducible V in the topsoils was responsible for the high concentration of V in the deep soils. Therefore, more attention should be paid to the reducible V when evaluating the mobility of V in soil.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aihemaiti A, Jiang J, Gao Y (2019) The effect of vanadium on essential element uptake of Setaria viridis’ seedlings. J Environ Manag 237:399–407

    CAS  Article  Google Scholar 

  2. Amorim FAC, Welz B, Costa ANCS, Lepri FG, Vale MGR, Ferreira SLC (2007) Determination of V in petroleum and petroleum products using atomic spectrometric techniques. Talanta 72:359

    Google Scholar 

  3. Anbar AD, Knoll A (2002) Proterozoic ocean chemistry and evolution: a bioinorganic bridge. Science 297:1137–1142

    CAS  Article  Google Scholar 

  4. Antoniadis V, Golia EE, Shaheen SM, Rinklebe J (2017) Bioavailability and health risk assessment of potentially toxic elements in Thriasio Plain, near Athens, Greece. Environ Geochem Health 39:319–330

    CAS  Article  Google Scholar 

  5. Atonaltzin GJ, Iris TTL, Dagoberto GS, Fernando CGM (2018) Vanadium stimulates pepper plant growth and flowering, increases concentrations of amino acids, sugars and chlorophylls, and modifies nutrient concentrations. PLoS ONE 13(8):e0201908

    Article  Google Scholar 

  6. Bellenger J, Wichard T, Kustka A, Kraepiel A (2008) Uptake of molybdenum and V by a nitrogen-fixing soil bacterium using siderophores. Nat Geosci 1:243–246

    CAS  Article  Google Scholar 

  7. Cappuyns V, Swennen R (2014) Release of V from oxidized sediments: insights from different extraction and leaching procedures. Environ Sci Pollut Res 21:2272–2282

    CAS  Article  Google Scholar 

  8. CNEMC (China National Environmental Monitoring Centre) (1990) The background values of chinese soils. Environmental Science Press of China, Beijing, China

  9. Fox PM, Doner HE (2003) Accumulation, release, and solubility of arsenic, molybdenum, and V in wetland sediments. J Environ Qual 32:2428–2435

    CAS  Article  Google Scholar 

  10. Ghosh SK, Saha R, Saha B (2015) Toxicity of inorganic vanadium compounds. Res Chem Intermed 41:4873–4897

    CAS  Article  Google Scholar 

  11. Hope BK (1994) A global biogeochemical budget for V. Sci Total Environ 141:1–10

    CAS  Article  Google Scholar 

  12. Huang JH, Huang F, Evans L, Glasauer S (2015) V: global (bio)geochemistry. Chem Geol 417:68–89

    CAS  Article  Google Scholar 

  13. Kraepiel A, Bellenger J, Wichard T, Morel F (2009) Multiple roles of siderophores in free-living nitrogen-fixing bacteria. Biometals 22:573–581

    CAS  Article  Google Scholar 

  14. Razo I, Carrizales L, Castro J, Díaz-Barriga F, Monroy M (2004) Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water Air Soil Pollut 152:129–152

    CAS  Article  Google Scholar 

  15. Rinklebe J, Kumpiene J, Laing GD, Ok YS (2017) Biogeochemistry of trace elements in the environment—editorial to the special issue. J Environ Manage 186:127–130

    Article  Google Scholar 

  16. Shaheen SM, Rinklebe JR (2014) Geochemical fractions of chromium, copper, and zinc and their vertical distribution in floodplain soil profiles along the Central Elbe River, Germany. Geoderma 228–229:142–159

    Article  Google Scholar 

  17. Shaheen SM, Rinklebe JR (2017) Vanadium in thirteen different soil profiles originating from Germany and Egypt: geochemical fractionation and potential mobilization. Appl Geochem 88:288–301

    Article  Google Scholar 

  18. Teng Y, Ni S, Zhang C (2003) Environmental geochemistry and ecological risk of V pollution in Panzhihua mining and smelting area, Sichuan China. Chin J Geochem 25(4):379–385

    Article  Google Scholar 

  19. Tersago K, De CW, Scheirs J, Vermeulen K, Blust R, Van BD, Verhagen R (2004) Immunotoxicology in wood mice along a heavy metal pollution gradient. Environ Pollut 132:385–394

    CAS  Article  Google Scholar 

  20. Vicars WC, Sickman JO (2015) Mineral dust transport to the Sierra Nevada, California: loading rates and potential source areas. J Geophys Res 116:424–424

    Google Scholar 

  21. Wisawapipat W, Kretzschmar R (2017) Solid phase speciation and solubility of vanadium in highly weathered soils. Environ Sci Technol 5:8254

    Article  Google Scholar 

  22. Xiao XY, Yang M, Guo ZH, Jiang ZC, Liu YN, Cao X (2015) Soil V pollution and microbial response characteristics from stone coal smelting district. Trans Nonferrous Metal Soc China 25:1271–1278

    CAS  Article  Google Scholar 

  23. Yang J, Tang Y, Yang K, Rouff AA, Elzinga EJ, Huang J (2014) Leaching characteristics of V in mine tailings and soils near a V titanomagnetite mining site. J Hazard Mater 264:498–504

    CAS  Article  Google Scholar 

  24. Yang J, Teng Y, Wu J, Chen H, Wang G, Song L, Yue W, Zuo R, Zhai Y (2017) Current status and associated human health risk of V in soil in China. Chemosphere 171:635–643

    CAS  Article  Google Scholar 

  25. Zhang B, Wang S, Diao M, Fu J, Xie M, Shi J, Liu Z, Jiang Y, Cao X, Borthwick AGL (2019) Microbial community responses to V distributions in mining geological environments and bioremediation assessment. J Geophys Res Biogeosci 124:601–615

    CAS  Article  Google Scholar 

  26. Rauret G, Lopez-Sanchez J, Sahuquillo A, Rubio R, Davidson C, Ure A, Quevauviller P (1999) Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J Environ Monit 1:57–61

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key Research and Development Project (2018YFC0214001), and the National Natural Scientific Foundation of China (41977289).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Huang Yi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 120 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhijie, L., Yi, H., Wei, Z. et al. Reducible Fraction Dominates the Mobility of Vanadium in Soil Around an Iron Smelter. Bull Environ Contam Toxicol 105, 915–920 (2020). https://doi.org/10.1007/s00128-020-03029-y

Download citation

Keywords

  • Vanadium
  • Contamination assessment
  • Speciation
  • Mobility
  • Panzhihua