Skip to main content

Nanostructure-Based Surface-Enhanced Raman Spectroscopy Techniques for Pesticide and Veterinary Drug Residues Screening

Abstract

Pesticide and veterinary drug residues in food and environment pose a threat to human health, and a rapid, super-sensitive, accurate and cost-effective analysis technique is therefore highly required to overcome the disadvantages of conventional techniques based on mass spectrometry. Recently, the surface-enhanced Raman spectroscopy (SERS) technique emerges as a potential promising analytical tool for rapid, sensitive and selective detections of environmental pollutants, mostly owing to its possible simplified sample pretreatment, gigantic detectable signal amplification and quick target analyte identification via finger-printing SERS spectra. So theoretically the SERS detection technology has inherent advantages over other competitors especially in complex environmental matrices. The progress in nanostructure SERS substrates and portable Raman appliances will promote this novel detection technology to play an important role in future rapid on-site assay. This paper reviews the advances in nanostructure-based SERS substrates, sensors and relevant portable integrated systems for environmental analysis, highlights the potential applications in the detections of synthetic chemicals such as pesticide and veterinary drug residues, and also discusses the challenges of SERS detection technique for actual environmental monitoring in the future.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ackermann KR, Henkel T, Popp J (2007) Quantitative online detection of low-concentrated drugs via a SERS microfluidic system. Chem Phys Chem 8:2665–2670

    CAS  Article  Google Scholar 

  2. Alsammarraie FK, Lin M (2017) Using standing gold nanorod arrays as surface-enhanced Raman spectroscopy (SERS) substrates for detection of carbaryl residues in fruit juice and milk. J Agric Food Chem 65:666–674

    CAS  Article  Google Scholar 

  3. Ashley J, Wu K, Hansen MF et al (2017) Quantitative detection of trace level cloxacillin in food samples using magnetic molecularly imprinted polymer extraction and surface-enhanced Raman spectroscopy nanopillars. Anal Chem 89:11484–11490

    CAS  Article  Google Scholar 

  4. Baynes RE, Dedonder K, Kissell L et al (2016) Health concerns and management of select veterinary drug residues. Food Chem Toxicol 88:112–122

    CAS  Article  Google Scholar 

  5. Bempah CK, Agyekum AA, Akuamoa F et al (2016) Dietary exposure to chlorinated pesticide residues in fruits and vegetables from Ghanaian markets. J Food Compos Anal 46:103–113

    CAS  Article  Google Scholar 

  6. Bennett ER, Moore MT, Cooper CM et al (2005) Vegetated agricultural drainage ditches for the mitigation of pyrethroid-associated runoff. Environ Toxicol Chem 24:2121–2127

    CAS  Article  Google Scholar 

  7. Bhandari G, Zomer P, Atreya K et al (2019) Pesticide residues in Nepalese vegetables and potential health risks. Environ Res 172:511–521

    CAS  Article  Google Scholar 

  8. Bressan LP, Robles-Najar J, Adamo CB et al (2019) 3D-printed microfluidic device for the synthesis of silver and gold nanoparticles. Microchem J 146:1083–1089

    CAS  Article  Google Scholar 

  9. Chen A, DePrince AE, Demortière A et al (2011) Self-assembled large Au nanoparticle arrays with regular hot spots for SERS. Small 7:2365–2371

    CAS  Article  Google Scholar 

  10. Chen B, Meng G, Huang Q et al (2014) Green synthesis of large-scale highly ordered core@shell nanoporous Au@Ag nanorod arrays as sensitive and peproducible 3D SERS substrates. ACS Appl Mater Interfaces 6:15667–15675

    CAS  Article  Google Scholar 

  11. Chen HY, Lin MH, Wang CY et al (2015) Large-scale hot spot engineering for quantitative SERS at the single-molecule scale. J Am Chem Soc 137:13698–13705

    CAS  Article  Google Scholar 

  12. Chen D, Zhu X, Huang J et al (2018) Polydopamine@gold nanowaxberry enabling improved SERS sensing of pesticides, pollutants, and explosives in complex samples. Anal Chem 90:9048–9054

    CAS  Article  Google Scholar 

  13. Cheng J, Wang S, Zhang S et al (2019) Rapid and sensitive determination of clenbuterol residues in animal urine by surface-enhanced Raman spectroscopy. Sensor Actuat B 279:7–14

    CAS  Article  Google Scholar 

  14. Cho WJ, Kim Y, Kim JK et al (2012) Ultrahigh-density array of silver nanoclusters for SERS substrate with high sensitivity and excellent reproducibility. ACS Nano 6:249–255

    CAS  Article  Google Scholar 

  15. Chu HY, Liu Y, Huang Y et al (2007) A high sensitive fiber SERS probe based on silver nanorod arrays. Opt Express 15:12230–12239

    CAS  Article  Google Scholar 

  16. Craig AP, Franca AS, Irudayaraj J (2013) Surface-enhanced Raman spectroscopy applied to food safety. Annu Rev Food Sci Technol 4:369–380

    CAS  Article  Google Scholar 

  17. Cullum BM, Mobley J, Chi Z et al (2000) Development of a compact, handheld Raman instrument with no moving parts for use in field analysis. Rev Sci Instrum 71:1602–1607

    CAS  Article  Google Scholar 

  18. Demirel G, Gieseking RLM, Ozdemir R et al (2019) Molecular engineering of organic semiconductors enables noble metal-comparable SERS enhancement and sensitivity. Nature Commun 10:5502

    CAS  Article  Google Scholar 

  19. Dhakal S, Chao K, Huang Q et al (2018) A simple surface-enhanced Raman spectroscopic method for on-site screening of tetracycline residue in whole milk. Sensors 18:424

    Article  CAS  Google Scholar 

  20. Fan M, Brolo AG (2009) Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit. Phys Chem Chem Phys 11:7381–7389

    CAS  Article  Google Scholar 

  21. Farber C, Kurouski D (2018) Detection and identification of plant pathogens on maize kernels with a hand-held Raman spectrometer. Anal Chem 90:3009–3012

    CAS  Article  Google Scholar 

  22. Fateixa S, Raposo M, Nogueira HIS et al (2018) A general strategy to prepare SERS active filter membranes for extraction and detection of pesticides in water. Talanta 182:558–566

    CAS  Article  Google Scholar 

  23. Fisher MC, Hawkins NJ, Sanglard D et al (2018) Worldwide emergence of resistance to antifungal drugs challenges human health and food. Science 360:739–742

    CAS  Article  Google Scholar 

  24. Fortuni B, Inose T, Uezono S et al (2017) In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrumsensitive SERS substrates. Chem Commun 53:11298–11301

    CAS  Article  Google Scholar 

  25. Freeman RG, Grabar KC, Allison KJ (1995) Self-assembled metal colloid monolayers: an approach to SERS substrates. Science 267:1629–1632

    CAS  Article  Google Scholar 

  26. Fu XC, Zhang J, Tao YY et al (2015) Three-dimensional mono-6-thio-β-cyclodextrin covalently functionalized gold nanoparticle/single-wall carbon nanotube hybrids for highly sensitive and selective electrochemical determination of methyl parathion. Electrochim Acta 153:12–18

    CAS  Article  Google Scholar 

  27. Gao R, Ko J, Cha K et al (2015) Fast and sensitive detection of an anthrax biomarker using SERS-based solenoid microfluidic sensor. Biosens Bioelectron 72:230–236

    CAS  Article  Google Scholar 

  28. Geng F, Zhao HP, Fu Q et al (2018) Gold nanochestnut arrays as ultra-sensitive SERS substrate for detecting trace pesticide residue. Nanotechnology 29:295502

    Article  CAS  Google Scholar 

  29. Grabar KC, Freeman RG, Hommer MB et al (1995) Preparation and characterization of Au colloid nonolayers. J Natan Anal Chem 67:735–743

    CAS  Article  Google Scholar 

  30. Guo QH, Zhang CJ, Wei C et al (2016) Controlling dynamic SERS hot spots on a monolayer film of Fe3O4@Au nanoparticles by a magnetic field. Spectrochim Acta A 152:336–342

    CAS  Article  Google Scholar 

  31. Guselnikova O, Postnikov P, Elashnikov R et al (2019a) Metal-organic framework (MOF-5) coated SERS active gold gratings: a platform for the selective detection of organic contaminants in soil. Anal Chim Acta 1068:70–79

    CAS  Article  Google Scholar 

  32. Guselnikova O, Postnikov P, Trelin A et al (2019b) Dual mode chip enantioselective express discrimination of chiral amines via wettability-based mobile application and portable surface-enhanced Raman spectroscopy measurements. ACS Sens 4:1032–1039

    CAS  Article  Google Scholar 

  33. Hajjou M, Qin Y, Bradby S et al (2013) Assessment of the performance of a handheld Raman device for potential use as a screening tool in evaluating medicines quality. J Pharmaceut Biomed Anal 74:47–55

    CAS  Article  Google Scholar 

  34. Hakonen A, Wu K, Schmidt MS et al (2018) Detecting forensic substances using commercially available SERS substrates and handheld Raman spectrometers. Talanta 189:649–652

    CAS  Article  Google Scholar 

  35. Halvorson RA, Vikesland PJ (2010) Surface-enhanced Raman spectroscopy (SERS) for environmental analyses. Environ Sci Technol 44:7749–7755

    CAS  Article  Google Scholar 

  36. Han B, Choi N, Kim KH et al (2011) Application of silver-coated magnetic microspheres to a SERS-based optofluidic sensor. J Phys Chem C 115:6290–6296

    CAS  Article  Google Scholar 

  37. Han C, Chen J, Wu X et al (2014) Detection of metronidazole and ronidazole from environmental samples by surface enhanced Raman spectroscopy. Talanta 128:293–298

    CAS  Article  Google Scholar 

  38. Han XX, Ji W, Zhao B et al (2017) Semiconductor-enhanced Raman scattering: active nanomaterials and applications. Nanoscale 9:4847–4861

    CAS  Article  Google Scholar 

  39. Hartman T, Weckhuysen BM (2018) Thermally stable TiO2- and SiO2-shell-isolated Au nanoparticles for in situ plasmon-enhanced Raman spectroscopy of hydrogenation catalysts. Chem Eur J 24:110

    Google Scholar 

  40. He D, Hu B, Yao QF et al (2009) Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles. ACS Nano 3:3993–4002

    CAS  Article  Google Scholar 

  41. He L, Lin M, Li H et al (2010) Surface-enhanced Raman spectroscopy coupled with dendritic silver nanosubstrate for detection of restricted antibiotics. J Raman Spectrosc 41:739–744

    CAS  Google Scholar 

  42. He X, Wang H, Li Z et al (2015) Ultrasensitive SERS detection of trinitrotoluene through capillarity-constructed reversible hot spots based on ZnO-Ag nanorod hybrids. Nanoscale 7:8619–8626

    CAS  Article  Google Scholar 

  43. He Y, Xiao S, Dong T et al (2019) Gold nanoparticles for qualitative detection of deltamethrin and carbofuran residues in soil by surface enhanced Raman scattering (SERS). Int J Mol Sci 20:2817

    CAS  Article  Google Scholar 

  44. Ho CC, Zhao K, Lee TY (2014) Quasi-3D gold nanoring cavity arrays with high-density hot-spots for SERS applications via nanosphere lithography. Nanoscale 6:8606–8611

    CAS  Article  Google Scholar 

  45. Hou C, Meng G, Huang Z et al (2015) Ordered arrays of vertically aligned Au-nanotubes grafted with flocky Au/Ag-nanospikes based on electrodeposition and subsequent redox reaction. Electrochem Commun 60:104–108

    CAS  Article  Google Scholar 

  46. Huang Z, Meng G, Huang Q et al (2010) Improved SERS performance from Au nanopillar arrays by abridging the pillar tip spacing by Ag sputtering. Adv Mater 22:4136–4139

    CAS  Article  Google Scholar 

  47. Huang Z, Meng G, Huang Q et al (2014) Polyacrylic acid sodium salt film entrapped Ag-nanocubes as molecule traps for SERS detection. Nano Res 7:1177–1187

    CAS  Article  Google Scholar 

  48. Huang Z, Lei X, Liu Y et al (2015) Tapered optical fiber probe assembled with plasmonic nanostructures for surface-enhanced Raman scattering application. ACS Appl Mater Interfaces 7:17247–17254

    CAS  Article  Google Scholar 

  49. Im H, Bantz KC, Lindquist NC et al (2010) Vertically oriented sub-10-nm plasmonic nanogap arrays. Nano Lett 10:2231–2236

    CAS  Article  Google Scholar 

  50. Jehlička J, Oren A (2013) Use of a handheld Raman spectrometer for fast screening of microbial pigments in cultures of halophilic microorganisms and in microbial communities in hypersaline environments in nature. J Raman Spectrosc 44:1285–1291

    Article  CAS  Google Scholar 

  51. Jehlička J, Culka A, Bersani D et al (2017) Comparison of seven portable Raman spectrometers: beryl as a case study. J Raman Spectrosc 48:1289–1299

    Article  CAS  Google Scholar 

  52. Jeong JW, Arnob MMP, Baek KM et al (2016) 3D cross-point plasmonic nanoarchitectures containing dense and regular hot spots for surface-enhanced Raman spectroscopy analysis. Adv Mater 28:8695–8704

    CAS  Article  Google Scholar 

  53. Jia W, Chu X, Ling Y et al (2014) High-throughput screening of pesticide and veterinary drug residues in baby food by liquid chromatography coupled to quadrupole Orbitrap mass spectrometry. J Chromatogr A 1347:122–128

    CAS  Article  Google Scholar 

  54. Jiang X, Yang M, Meng Y et al (2013) Cysteamine-modified silver nanoparticle aggregates for quantitative SERS sensing of pentachlorophenol with a portable Raman spectrometer. ACS Appl Mater Interfaces 5:6902–6908

    CAS  Article  Google Scholar 

  55. Jiang S, Guo J, Zhang C et al (2017) A sensitive, uniform, reproducible and stable SERS substrate has been presented based on MoS2@Ag nanoparticles@pyramidal silicon. RSC Adv 7:5764–5773

    CAS  Article  Google Scholar 

  56. Kandjani AE, Mohammadtaheri M, Thakkar A et al (2014) Zinc oxide/silver nanoarrays as reusable SERS substrates with controllable ‘hot-spots’ for highly reproducible molecular sensing. J Colloid Interf Sci 436:251–257

    CAS  Article  Google Scholar 

  57. Karunathilaka SR, Yakes BJ, He K et al (2018) First use of handheld Raman spectroscopic devices and on-board chemometric analysis for the detection of milk powder adulteration. Food Control 92:137–146

    CAS  Article  Google Scholar 

  58. Keir R, Igata E, Arundell M et al (2002) SERRS. In situ substrate formation and improved detection using microfluidics. Anal Chem 74:1503–1508

    CAS  Article  Google Scholar 

  59. Khlebtsov BN, Khanadeev VA, Panfilova EV et al (2014) Gold nanoisland films as reproducible SERS substrates for highly sensitive detection of fungicides. ACS Appl Mater Interfaces 7:6518–6529

    Article  CAS  Google Scholar 

  60. Kim A, Barcelo SJ, Li Z (2015) SERS-based pesticide detection by using nanofinger sensors. Nanotechnology 26:015502

    CAS  Article  Google Scholar 

  61. Kim G, Kim M, Hyun C et al (2016) Hexagonal boron nitride/Au substrate for manipulating surface plasmon and enhancing capability of surface-enhanced Raman spectroscopy. ACS Nano 10:11156–11162

    CAS  Article  Google Scholar 

  62. Kong X, Xi Y, LeDuff P et al (2016) Optofluidic sensing from inkjet-printed droplets: the enormous enhancement by evaporation-induced spontaneous flow on photonic crystal biosilica. Nanoscale 8:17285–17294

    CAS  Article  Google Scholar 

  63. Kong X, Chong X, Squire K et al (2018) Microfluidic diatomite analytical devices for illicit drug sensing with ppb-Level sensitivity. Sensor Actuat B 259:587–595

    CAS  Article  Google Scholar 

  64. Kubackova J, Fabriciova G, Miskovsky P et al (2015) Sensitive surface-enhanced Raman spectroscopy (SERS) detection of organochlorine pesticides by alkyl dithiol-functionalized metal nanoparticles-induced plasmonic hot spots. Anal Chem 87:663–669

    CAS  Article  Google Scholar 

  65. Kumari D, John S (2019) Health risk assessment of pesticide residues in fruits and vegetables from farms and markets of Western Indian Himalayan region. Chemosphere 224:162–167

    CAS  Article  Google Scholar 

  66. Lai YH, Chen SW, Hayashi M et al (2014) Mesostructured arrays of nanometer-spaced gold nanoparticles for ultrahigh number density of SERS hot Spots. Adv Funct Mater 24:2544–2552

    CAS  Article  Google Scholar 

  67. Lee S, Choi J, Chen L et al (2007) Fast and sensitive trace analysis of malachite green using a surface-enhanced Raman microfluidic sensor. Anal Chim Acta 590:139–144

    CAS  Article  Google Scholar 

  68. Lee W, Lee SY, Briber RM et al (2011) Self-assembled SERS substrates with tunable surface plasmon resonances. Adv Funct Mater 21:3424–3429

    CAS  Article  Google Scholar 

  69. Li D, Li DW, Fossey JS et al (2010) Portable surface-enhanced Raman scattering sensor for rapid detection of aniline and phenol derivatives by on-site electrostatic preconcentration. Anal Chem 82:9299–9305

    CAS  Article  Google Scholar 

  70. Li R, Zhang H, Chen QW et al (2011) Improved surface-enhanced Raman scattering on micro-scale Au hollow spheres: synthesis and application in detecting tetracycline. Analyst 136:2527–2532

    CAS  Article  Google Scholar 

  71. Li X, Hu H, Li D et al (2012) Ordered array of gold semishells on TiO2 spheres: an ultrasensitive and recyclable SERS substrate. ACS Appl Mater Interfaces 4:2180–2185

    CAS  Article  Google Scholar 

  72. Li YT, Qu LL, Li DW et al (2013) Rapid and sensitive in-situ detection of polar antibiotics in water using a disposable Ag-graphene sensor based on electrophoretic preconcentration and surface-enhanced Raman spectroscopy. Biosens Bioelectron 43:94–100

    CAS  Article  Google Scholar 

  73. Li XM, Bi MH, Cui L et al (2017) 3D aluminum hybrid plasmonic nanostructures with large areas of dense hot spots and long-term stability. Adv Funct Mater 27:1605703

    Article  CAS  Google Scholar 

  74. Li H, Wang X, Wang Z et al (2018) A polydopamine-based molecularly imprinted polymer on nanoparticles of type SiO2@rGO@Ag for the detection of λ-cyhalothrin via SERS. Microchim Acta 185:193

    Article  CAS  Google Scholar 

  75. Li X, Yang T, Song Y et al (2019) Surface-enhanced Raman spectroscopy (SERS)-based immunochromatographic assay (ICA) for the simultaneous detection of two pyrethroid pesticides. Sens Actuat B 283:230–238

    CAS  Article  Google Scholar 

  76. Liu GL, Lee LP (2005) Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics. Appl Phys Lett 87:074101

    Article  CAS  Google Scholar 

  77. Liu B, Feng J, Sun X et al (2018) Development of an enzyme-linked immunosorbent assay for the detection of difenoconazole residues in fruits and vegetables. Food Anal Method 11:119–127

    Article  Google Scholar 

  78. Lu H, Zhu L, Lu Y et al (2019) Manipulating “hot spots” from nanometer to angstrom: toward understanding integrated contributions of molecule number and gap size for ultrasensitive surface-enhanced Raman scattering detection. ACS Appl Mater Interfaces 11:39359–39368

    CAS  Article  Google Scholar 

  79. Ma L, Wu H, Huang Y et al (2016) High-performance real-time SERS detection with recyclable Ag nanorods@HfO2 substrates. ACS Appl Mater Interfaces 8:27162–27168

    CAS  Article  Google Scholar 

  80. Madden O, Chan DMW, Dundon M et al (2018) Quantifying collagen quality in archaeological bone: improving data accuracy with benchtop and handheld Raman spectrometers. J Archaeol Sci 18:596–605

    Google Scholar 

  81. Michaels AM, Nirmal M, Brus LE (1999) Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. J Am Chem Soc 121:9932–9939

    CAS  Article  Google Scholar 

  82. Mobley J, Cullum BM, Wintenberg AL et al (2004) Single-board computer based control system for a portable Raman device with integrated chemical identification. Rev Sci Instrum 75:2016–2023

    CAS  Article  Google Scholar 

  83. Mosier-Boss PA (2017) Review of SERS substrates for chemical sensing. Nanomaterials 7:142

    Article  CAS  Google Scholar 

  84. Ngo HT, Wang HN, Fales AM et al (2013) Label-free DNA biosensor based on SERS molecular Ssentinel on nanowave chip. Anal Chem 85:6378–6383

    CAS  Article  Google Scholar 

  85. Nguyen MK, Su WN, Chen CH et al (2017) Highly sensitive and stable Ag@SiO2 nanocubes for label-free SERS-photoluminescence detection of biomolecules. Spectrochim Acta A 175:239–245

    CAS  Article  Google Scholar 

  86. Nie Y, Teng Y, Li P (2018) Label-free aptamer-based sensor for specific detection of malathion residues by surface-enhanced Raman scattering. Spectrochim Acta A 191:271–276

    CAS  Article  Google Scholar 

  87. Oh YJ, Jeong KH (2014) Optofluidic SERS chip with plasmonic nanoprobes self-aligned along microfluidic channels. Lab Chip 14:865–868

    CAS  Article  Google Scholar 

  88. Pal AK, Pagal S, Prashanth K et al (2019) Ag/ZnO/Au 3D hybrid structured reusable SERS substrate as highly sensitive platform for DNA detection. Sens Actuat B 279:157–169

    CAS  Article  Google Scholar 

  89. Park M, Oh YJ, Park SG et al (2015) Electrokinetic preconcentration of small molecules within volumetric electromagnetic hotspots in surface enhanced Raman scattering. Small 11:2487–2492

    CAS  Article  Google Scholar 

  90. Pang S, Labuza TP, He LL (2014) Development of a single aptamer-based surface enhanced Raman scattering method for rapid detection of multiple pesticides. Analyst 139:18951901

    Article  Google Scholar 

  91. Rycenga M, Xia X, Moran CH et al (2011) Generation of hot spots with silver nanocubes for single-molecule detection by surface-enhanced Raman scattering. Angew Chem Int Ed 50:5473–5477

    CAS  Article  Google Scholar 

  92. Shen C, Hui C, Yang T et al (2008) Monodisperse Noble-metal nanoparticles and their surface enhanced Raman scattering properties. Chem Mater 20:6939–6944

    CAS  Article  Google Scholar 

  93. Short L, Thoms AV, Cao B et al (2015) Facile residue analysis of recent and prehistoric cook stones using handheld Raman spectrometry. J Raman Spectrosc 46:126–132

    CAS  Article  Google Scholar 

  94. Singh JP, Chu HY, Abell J et al (2012) Flexible and mechanical strain resistant large area SERS active substrates. Nanoscale 4:3410–3414

    CAS  Article  Google Scholar 

  95. Sinha G, Depero LE, Alessandri I (2011) Recyclable SERS substrates based on Au-coated ZnO nanorods. ACS Appl Mater Interfaces 3:2557–2563

    CAS  Article  Google Scholar 

  96. Sivashanmugan K, Squire K, Kraai JA et al (2019) Biological photonic crystal-enhanced plasmonic mesocapsules: approaching single-molecule optofluidic-SERS sensing. Adv Optical Mater 7:1900415

    Article  CAS  Google Scholar 

  97. Song D, Yang R, Wang C et al (2016) Reusable nanosilver-coated magnetic particles for ultrasensitive SERS-based detection of malachite green in water samples. Sci Rep 6:22870

    CAS  Article  Google Scholar 

  98. Strehle KR, Cialla D, Rösch P et al (2007) A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system. Anal Chem 79:1542–2154

    CAS  Article  Google Scholar 

  99. Stubbings G, Bigwood T (2009) The development and validation of a multiclass liquid chromatography tandem mass spectrometry (LC–MS/MS) procedure for the determination of veterinary drug residues in animal tissue using a QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) approach. Anal Chim Acta 637:68–78

    CAS  Article  Google Scholar 

  100. Suzuki S, Yoshimura M (2017) Chemical stability of graphene coated silver substrates for surface-enhanced Raman scattering. Sci Rep 7:14851

    Article  CAS  Google Scholar 

  101. Taheri N, Lan M, Wei P et al (2016) Chemiluminescent enzyme immunoassay for rapid detection of three α-cyano pyrethroid residues in agricultural products. Food Anal Method 9:2896–2905

    Article  Google Scholar 

  102. Tang H, Meng G, Huang Q et al (2012) Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls. Adv Funct Mater 22:218–224

    Article  CAS  Google Scholar 

  103. Tian ZQ, Ren B, Wu DY (2002) Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures. J Phys Chem B 106:9463–9483

    CAS  Article  Google Scholar 

  104. Vitek P, Ali EMA, Edwards HGM et al (2012) Evaluation of portable Raman spectrometer with 1064 nm excitation for geological and forensic applications. Spectrochim Acta A 86:320–327

    CAS  Article  Google Scholar 

  105. Wang X, Li M, Meng L et al (2014) Probing the location of hot spots by surface-enhanced Raman spectroscopy: toward uniform substrates. A CS Nano 8:528–536

    CAS  Article  Google Scholar 

  106. Wang H, Zhou Y, Jiang X et al (2015) Simultaneous capture, detection, and inactivation of bacteria as enabled by a surface-enhanced Raman scattering multifunctional chip. Angew Chem Int Ed 54:16

    Google Scholar 

  107. Wang K, Huang M, Chen J et al (2017) A “drop-wipe-test” SERS method for rapid detection of pesticide residues in fruits. J Raman Spectrosc 49:493–498

    Article  CAS  Google Scholar 

  108. Wang Y, Jin Y, Xiao X et al (2018) Flexible, transparent and highly sensitive SERS substrates with cross-nanoporous structures for fast on-site detection. Nanoscale 10:15195–15204

    CAS  Article  Google Scholar 

  109. Wang B, Liu JH, Yu J et al (2020) Broad spectrum detection of veterinary drugs with a highly stable metalorganic framework. J Hazard Mater 382:121018

    CAS  Article  Google Scholar 

  110. Weatherston JD, Worstell NC, Wu HJ et al (2016) Quantitative surface-enhanced Raman spectroscopy for kinetic analysis of aldol condensation using Ag-Au core-shell nanocubes. Analyst 141:6051–6060

    CAS  Article  Google Scholar 

  111. Weng S, Wang F, Dong R et al (2018) Fast and quantitative analysis of ediphenphos residue in rice using surface-enhanced Raman spectroscopy. J Food Sci 83:1179–1185

    CAS  Article  Google Scholar 

  112. White IM, Gohring J, Fan X et al (2007) SERS-based detection in an optofluidic ring resonator platform. Opt Express 15:17433–17442

    CAS  Article  Google Scholar 

  113. Wi JS, Tominaka S, Uosaki K et al (2012) Porous gold nanodisks with multiple internal hot spots. Phys Chem Chem Phys 14:9131–9136

    CAS  Article  Google Scholar 

  114. Wu Y, Zhou F, Yang L et al (2013) A shrinking strategy for creating dynamic SERS hot spots on the surface of thermosensitive polymer nanospheres. Chem Commun 49:5025–5027

    CAS  Article  Google Scholar 

  115. Xiao X, Yan K, Xu X et al (2015) Rapid analysis of ractopamine in pig tissues by dummy-template imprinted solid-phase extraction coupling with surface-enhanced Raman spectroscopy. Talanta 138:40–45

    CAS  Article  Google Scholar 

  116. Xu BB, Ma ZC, Wang H et al (2011) A SERS-active microfluidic device with tunable surface plasmon resonances. Electrophoresis 32:3378–3384

    CAS  Article  Google Scholar 

  117. Xue L, Xie W, Driessen L et al (2017) Advanced SERS sensor based on capillarity-assisted preconcentration through gold nanoparticle-decorated porous nanorods. Small 13:1603947

    Article  CAS  Google Scholar 

  118. Yang X, Zhong H, Zhu Y et al (2013) Ultrasensitive and recyclable SERS substrate based on Au-decorated Si nanowire arrays. Dalton Trans 42:14324–14330

    CAS  Article  Google Scholar 

  119. Yang Y, Liu J, Fu ZW et al (2014) Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity. J Am Chem Soc 136:8153–8156

    CAS  Article  Google Scholar 

  120. Yang T, Qu Y, Hickey M et al (2019) Mapping of pesticide transmission on biological tissues by surface enhanced Raman microscopy with a gold nanoparticle mirror. ACS Appl Mater Interfaces 11:44894–44904

    CAS  Article  Google Scholar 

  121. Yap LW, Chen H, Gao Y et al (2017) Bifunctional plasmonic-magnetic particles for an enhanced microfluidic SERS immunoassay. Nanoscale 9:7822–7829

    CAS  Article  Google Scholar 

  122. Yaseen T, Sun DW, Pu H et al (2018) Detection of omethoate residues in peach with surface-enhanced Raman spectroscopy. Food Anal Method 11:2518–2527

    Article  Google Scholar 

  123. Yazdi SH, White IM (2013) Multiplexed detection of aquaculture fungicides using a pump-free optofluidic SERS microsystem. Analyst 138:100–103

    CAS  Article  Google Scholar 

  124. Yea K, Lee S, Kyong JB et al (2005) Ultra-sensitive trace analysis of cyanide water pollutant in a PDMS microfluidic channel using surface-enhanced Raman spectroscopy. Analyst 130:1009–1011

    CAS  Article  Google Scholar 

  125. Yilmaz M, Babur E, Ozdemir M et al (2017) Nanostructured organic semiconductor films for molecular detection with surface-enhanced Raman spectroscopy. Nat Mater 16:918–925

    CAS  Article  Google Scholar 

  126. Yu WW, White IM (2013) Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst 138:1020–1025

    CAS  Article  Google Scholar 

  127. Zhang X, Zhao J, Whitney AV et al (2006) Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. J Am Chem Soc 128:10304–10309

    CAS  Article  Google Scholar 

  128. Zhang H, Kang Y, Liu P et al (2016a) Determination of pesticides by surface-enhanced Raman spectroscopy on gold-nanoparticle-modified polymethacrylate. J Anal Lett 49:2268–2278

    CAS  Article  Google Scholar 

  129. Zhang N, Humbert G, Gong T et al (2016b) Side-channel photonic crystal fiber for surface enhanced Ramanscattering sensing. Sens Actuat B 223:195–201

    CAS  Article  Google Scholar 

  130. Zhang C, You E, Jin Q et al (2017a) Observing the dynamic ‘‘hot spots’’ on two-dimensional Au nanoparticles monolayer film. Chem Commun 53:6788–6791

    CAS  Article  Google Scholar 

  131. Zhang CH, Zhu J, Li JJ et al (2017b) Small and sharp triangular silver nanoplates synthesized utilizing tiny triangular nuclei and their excellent SERS activity for selective detection of thiram residue in soil. ACS Appl Mater Interfaces 9:17387–17398

    CAS  Article  Google Scholar 

  132. Zhang X, Si S, Zhang X et al (2017c) Improved thermal stability of graphene-veiled noble metal nanoarrays as recyclable SERS substrates. ACS Appl Mater Interfaces 9:40726–40733

    CAS  Article  Google Scholar 

  133. Zhang C, Li C, Yu J (2018) SERS activated platform with three-dimensional hot spots and tunable nanometer gap. Sens Actuat B 258:163–171

    CAS  Article  Google Scholar 

  134. Zhao K, Zhao J, Wu C et al (2015a) Fabrication of silver-decorated sulfonated polystyrene microspheres for surface-enhanced Raman scattering and antibacterial applications. RSC Adv 5:69543–69554

    CAS  Article  Google Scholar 

  135. Zhao X, Xue J, Mu Z et al (2015b) Gold nanoparticle incorporated inverse opal photonic crystal capillaries for optofluidic surface enhanced Raman spectroscopy. Biosens Bioelectron 72:268–274

    CAS  Article  Google Scholar 

  136. Zhao H, Hasi W, Li N et al (2019) Preparation of a high-performance thermally shrinkable polystyrene SERS substrate via Au@Ag nanorods self-assembled to detect pesticide residues. J Raman Spectrosc 50:1679–1690

    CAS  Article  Google Scholar 

  137. Zhao P, Liu H, Zhang L et al (2020) Paper-based SERS sensing platform based on 3D silver dendrites and molecularly imprinted identifier sandwich hybrid for neonicotinoid quantification. ACS Appl Mater Interfaces 12:8845–8854

    CAS  Article  Google Scholar 

  138. Zheng Y, Wang WX, Fu Q et al (2014) Surface-enhanced Raman scattering (SERS) substrate based on large-area well-defined gold nanoparticle arrays with high SERS uniformity and stability. Chem Plus Chem 79:1622–1630

    CAS  Google Scholar 

  139. Zheng L, Kulkarni P, Birch ME et al (2018) Analysis of crystalline silica aerosol using portable Raman spectrometry: feasibility of near real-time measurement. Anal Chem 90:6229–6239

    CAS  Article  Google Scholar 

  140. Zhong LB, Yin J, Zheng YM et al (2014) Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates. Anal Chem 86:6262–6267

    CAS  Article  Google Scholar 

  141. Zhou Q, Meng G, Zheng P et al (2015) A surface-enhanced Raman scattering sensor integrated with battery-controlled fluidic device for capture and detection of trace small molecules. Sci Rep 5:12865

    CAS  Article  Google Scholar 

  142. Zhou N, Meng G, Huang Z et al (2016a) A flexible transparent Ag-NC@PE film as a cut-and-paste SERS substrate for rapid in situ detection of organic pollutants. Analyst 141:5864–5869

    CAS  Article  Google Scholar 

  143. Zhou N, Zhou Q, Meng G et al (2016b) Incorporation of a basil-seed-based surface enhanced Raman scattering sensor with a pipet for detection of melamine. ACS Sens 1:1193–1197

    CAS  Article  Google Scholar 

  144. Zhou Q, Meng G, Wu N et al (2016c) Dipping into a drink: basil-seed supported silver nanoparticles assurface-enhanced Raman scattering substrates for toxic molecule detection. Sens Actuat B 223:447–452

    CAS  Article  Google Scholar 

  145. Zhou Q, Meng G, Liu J et al (2017) A hierarchical nanostructure-based surface-enhanced Raman scattering sensor for preconcentration and detection of antibiotic pollutants. Adv Mater Technol 2:1700028

    Article  CAS  Google Scholar 

  146. Zhu C, Meng G, Zheng P et al (2016) A hierarchically ordered array of silver-nanorod bundles for surface-enhanced Raman scattering detection of phenolic pollutants. Adv Mater 28:4871–4876

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Numbers 51572262, 51632009), Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant Number QYZDJ-SSW-SLH046), and the CAS/SAFEA International Partnership Program for Creative Research Teams.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mingtao Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, M., Zhang, X. Nanostructure-Based Surface-Enhanced Raman Spectroscopy Techniques for Pesticide and Veterinary Drug Residues Screening. Bull Environ Contam Toxicol 107, 194–205 (2021). https://doi.org/10.1007/s00128-020-02989-5

Download citation

Keywords

  • Surface-enhanced Raman spectroscopy (SERS)
  • Nanostructure
  • Detection
  • Pesticide
  • Veterinary drug