Effects of Sulfamethoxazole Exposure on the Growth, Antioxidant System of Chlorella vulgaris and Microcystis aeruginosa

Abstract

Sulfamethoxazole (SMZ) is a kind of sulfonamides antibiotic, which is widely used in human life. This study investigated the effects of SMZ on physiological and biochemical indexes of Chlorella vulgaris (C. vulgaris) and Microcystis aeruginosa (M. aeruginosa) for 35-day. The results showed that SMZ inhibited the growth and Chl-a content of C. vulgaris and M. aeruginosa, and growth inhibition rate was 8.06%–95.86%, Chl-a content decreased 2.44%–98.04%. SMZ resulting in increased SOD and CAT activity and destroyed the dynamic balance of antioxidant system. In addition, SMZ increased the content of malondialdehyde (MDA) in algae, destroyed the cell membrane to a certain extent, which was 1.8–7.3 folds higher than the control group. High concentration of SMZ can make algae cells exceed the limit of cell antioxidant capacity. Coupled with the serious damage of cell membrane, algae cells begin to appear a large number of death phenomenon.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ahmad A, Daschner FD, Kummerer K (1999) Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfamethoxazole and inhibition of waste water bacteria. Arch Environ Contam Toxicol 37(2):158–163

    Article  Google Scholar 

  2. Bellec L, Grimsley N, Desdevises Y (2010) Isolation of prasinoviruses of the green unicellular algae Ostreococcus spp. on a worldwide geographical scale. Appl Environ Microbiol 76(1):96–101

    CAS  Article  Google Scholar 

  3. Bishop DG, Bain JM, Smillie RM (1973) The effect of antibiotics on the ultrastructure and photochemical activity of a developing chloroplast. J Exp Bot 24(2):361–362

    CAS  Article  Google Scholar 

  4. Campanella L, Martini E, Tomassetti M (2005) Antioxidant capacity of the algae using a biosensor method. Talanta 66(4):902–911

    CAS  Article  Google Scholar 

  5. Chen L, Xie M, Bi Y et al (2012) The combined effects of UV-B radiation and herbicides on photosynthesis, antioxidant enzymes and DNA damage in two bloom-forming cyanobacteria. Ecotoxicol Environ Saf 80(3):224–230

    CAS  Article  Google Scholar 

  6. George SB, Robert LM, Gábor B et al (2019) Community dynamics and function of algae and bacteria during winter in central European great lakes. J Great Lakes Res 9:1–9

    Google Scholar 

  7. Gonzà lez-Pleiter M, Gonzalo S, Rodea-Palomares I et al (2013) Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: implications for environmental risk assessment. Water Res 47(6):2050–2064

    Article  CAS  Google Scholar 

  8. Gregor J, Maršálek B (2004) Freshwater phytoplankton quantification by chlorophyll a: a comparative study of in vitro, in vivo and in situ methods. Water Res 38(3):510–522

    Article  CAS  Google Scholar 

  9. Guo RX, Chen JQ (2012) Phytoplankton toxicity of the antibiotic chlortetracycline and its UV light degradation products. Chemosphere 87(11):1254–1259

    CAS  Article  Google Scholar 

  10. Hong Y, Hu HY, Xie X et al (2009) Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa. Aquat Toxicol 91(3):262–269

    CAS  Article  Google Scholar 

  11. Kołodziejska M, Maszkowska J, Białk-Bielińska A et al (2013) Aquatic toxicity of four veterinary drugs commonly applied in fish farming and animal husbandry. Chemosphere 92(9):1253–1259

    Article  CAS  Google Scholar 

  12. Li B, Zhang T (2010) Biodegradation and adsorption of antibiotics in the activated sludge process. Environ Sci Technol 44:3468–3473

    CAS  Article  Google Scholar 

  13. Liu Y, Guan Y, Gao B et al (2012) Antioxidant responses and degradation of two antibiotic contaminants in Microcystis aeruginosa. Ecotoxicol Environ Saf 86(6):23–30

    CAS  Article  Google Scholar 

  14. María ES, Marzio WD, Alberdi JL (2012) Assessment of Cyfluthrin commercial formulation on growth, photosynthesis and catalase activity of green algae. Pestic Biochem Physiol 104(1):50–57

    Article  CAS  Google Scholar 

  15. Mario E, Patricia P, Leila C et al (2019) Malondialdehyde interferes with the formation and detection of primary carbonyls in oxidized proteins. Redox Biol 19:1–28

    Google Scholar 

  16. Michael I, Rizzo L, Mcardell CS et al (2013) Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Res 47(3):957–995

    CAS  Article  Google Scholar 

  17. Monmeesil P, Fungfuang W, Tulayakul P et al (2019) The effects of astaxanthin on liver histopathology and expression of superoxide dismutase in rat aflatoxicosis. J Vet Med Sci 1:1–31

    Google Scholar 

  18. Nakayama K, Abe K, Okada M (1983) Light-induced absorbance changes of carotenoids in brown algae. Bot Mag 96(1):29–36

    CAS  Article  Google Scholar 

  19. Nie XP, Lu JY, Li X et al (2007) Toxic effects of norfloxacin on the growth and the activity of antioxidase of Chlorella pyrenoidosa. J Asian Ecotoxicol 2(3):327–332

    CAS  Google Scholar 

  20. Qian H, Li J, Pan X et al (2012) Effects of streptomycin on growth of algae Chlorella vulgaris and Microcystis aeruginosa. Environ Toxicol 27(4):229–237

    CAS  Article  Google Scholar 

  21. Rachna S, Akhand PS, Sunil K et al (2019) Antibiotic resistance in major rivers in the world: a systematic review on occurrence, emergence, and management strategies. J Clean Prod 234:1484–1505

    Article  CAS  Google Scholar 

  22. Sahu GK, Sabat SC (2011) Changes in growth, pigment content and antioxidants in the root and leaf tissues of wheat plants under the influence of exogenous salicylic acid. J Plant Physiol 23(3):209–218

    CAS  Google Scholar 

  23. Satthong S, Saego K, Kitrungloadjanaporn P et al (2019) Modeling the effects of light sources on the growth of algae. Adv Differ Eqn 2019:1–6

    Article  Google Scholar 

  24. Shao J, Wu Z, Yu G et al (2009) Allelopathic mechanism of pyrogallol to Microcystis aeruginosa PCC7806 (Cyanobacteria): from views of gene expression and antioxidant system. Chemosphere 75(7):924–928

    CAS  Article  Google Scholar 

  25. Song L, Zhang Q, Zheng L et al (2014) The freshwater algae culture collection at the Institute of Hydrobiology (FACHB): algal resources for fundamental and applied research. Algol Stud 145(1):5–14

    Article  Google Scholar 

  26. Wan J, Guo P, Peng X et al (2015) Effect of erythromycin exposure on the growth, antioxidant system and photosynthesis of Microcystis flos-aquae. J Hazard Mater 283:778–786

    CAS  Article  Google Scholar 

  27. Wang ZH, Chen SG, Cao X (2010) Micro-nutrients effects on algae colony: growth rate and biomass response to various micro-nutrients and competitive inhibitions among multi-microelements. Bioinformatics and biomedical engineering, 2010 4th international conference on IEEE, pp 97–104.

  28. Wang T, Jónsdóttir R, Liu H et al (2012) Antioxidant capacities of phlorotannins extracted from the brown algae Fucus vesiculosus. J Agric Food Chem 60(23):5874–5883

    CAS  Article  Google Scholar 

  29. Xu Y, Guo C, Luo Y et al (2016) Occurrence and distribution of antibiotics, antibiotic resistance genes in the urban rivers in Beijing, China. Environ Pollut 213:833–840

    CAS  Article  Google Scholar 

  30. Yang Y, Xu C, Cao X et al (2017) Antibiotic resistance genes in surface water of eutrophic urban lakes are related to heavy metals, antibiotics, lake morphology and anthropic impact. Ecotoxicology 26(6):831–840

    CAS  Article  Google Scholar 

  31. Yue XL, Zhang XP, Hu XW et al (2007) Effect of bensulfuron-methyl on growth of Chlorella pyrenoidosa. Agric Sci 6(3):316–321 (in Chinese)

    CAS  Google Scholar 

  32. Zhou W, Wang Y, Xiao H et al (2007) Sensitivity of several marine microalga to antibiotics. J Wuhan Univ Technol 53(2):249–254

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the Shandong Province National Science Foundation (ZR2017MC047), the Critical Patented Projects in the Control and Management of National Polluted Water Bodies (2017ZX07502003-06), and the Special Project of Taishan Scholar Construction Engineering (ts201712084).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shaohua Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Sun, S., Jia, R. et al. Effects of Sulfamethoxazole Exposure on the Growth, Antioxidant System of Chlorella vulgaris and Microcystis aeruginosa. Bull Environ Contam Toxicol 105, 358–365 (2020). https://doi.org/10.1007/s00128-020-02952-4

Download citation

Keywords

  • Sulfamethoxazole
  • Growth inhibition rate
  • Antioxidant capacity
  • Lipid peroxidation