Skip to main content

Current Progress on Antibiotic Sensing Based on Ratiometric Fluorescent Sensors

Abstract

Antibiotics, which can be used as veterinary drugs, are widely used in the prevention and treatment of infectious diseases for animals. However, overuse of antibiotics had caused serious problems on food contamination and human harm. For control such public issues, several of techniques have been in recent years. Ratiometric fluorescent (RF) technique, as one of the most promising strategies for quantitatively evaluated analytes, had been extensively developed for the readily measurements on the two different fluorescent emission intensities. In this review, the construction strategies for recent RF sensors will be mainly focused on. Meanwhile, the recent advances and new tendencies for detection of antibiotics based on RF technique shall be introduced. Finally, outlooks on the opportunities and challenges for quantitative fluorescence sensing on antibiotics will be summarized.

This is a preview of subscription content, access via your institution.

Fig. 1

Reproduced from Yang et al. (2017)

Fig. 2

Reproduced from Xu and Yan (2016)

Fig. 3

Reproduced from Li et al. (2018a)

Fig. 4

Reproduced from Jing et al. (2020)

Fig. 5

Reproduced from Su et al. (2019a)

Fig. 6

Reproduced from Jia et al. (2019a)

Fig. 7

Reproduced from Liu et al. (2019b)

References

  1. Bagheri S, TermehYousefi A, Mehrmashhadi J (2019) Carbon dot-based fluorometric optical sensors: an overview. Rev Inorg Chem 39:179–197. https://doi.org/10.1515/revic-2019-0002

    CAS  Article  Google Scholar 

  2. Bartek IL et al (2016) Antibiotic bactericidal activity is countered by maintaining pH homeostasis in mycobacterium smegmatis. mSphere 1:18. https://doi.org/10.1128/mSphere.00176-16

    CAS  Article  Google Scholar 

  3. Chen XQ et al (2018) Ratiometric fluorescence nanosensors based on core-shell structured carbon/ CdTe quantum dots and surface molecularly imprinted polymers for the detection of sulfadiazine. J Sep Sci 41:4394–4401. https://doi.org/10.1002/jssc.201800866

    CAS  Article  Google Scholar 

  4. Cho M-J, Park S-Y (2019) Carbon-dot-based ratiometric fluorescence glucose biosensor. Sens Actuators B 282:719–729. https://doi.org/10.1016/j.snb.2018.11.055

    CAS  Article  Google Scholar 

  5. Daghrir R, Drogui P (2013) Tetracycline antibiotics in the environment: a review. Environ Chem Lett 11:209–227. https://doi.org/10.1007/s10311-013-0404-8

    CAS  Article  Google Scholar 

  6. Dong Y, Cai J, Fang Q, You X, Chi Y (2016) Dual-emission of lanthanide metal-organic frameworks encapsulating carbon-based dots for ratiometric detection of water in organic solvents. Anal Chem 88:1748–1752. https://doi.org/10.1021/acs.analchem.5b03974

    CAS  Article  Google Scholar 

  7. Du LF, Liu WK (2012) Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems: a review. Agron Sustain Dev 32:309–327. https://doi.org/10.1007/s13593-011-0062-9

    CAS  Article  Google Scholar 

  8. Emam HE, Abdelhamid HN, Abdelhameed RM (2018) Self-cleaned photoluminescent viscose fabric incorporated lanthanide-organic framework (Ln-MOF). Dyes Pigm 159:491–498. https://doi.org/10.1016/j.dyepig.2018.07.026

    CAS  Article  Google Scholar 

  9. Gan T, Shi Z, Sun J, Liu Y (2014) Simple and novel electrochemical sensor for the determination of tetracycline based on iron/zinc cations–exchanged montmorillonite catalyst. Talanta 121:187–193. https://doi.org/10.1016/j.talanta.2014.01.002

    CAS  Article  Google Scholar 

  10. Gothwal R, Shashidhar T (2015) Antibiotic pollution in the environment: a review. Clean-Soil Air Water 43:479–489. https://doi.org/10.1002/clen.201300989

    CAS  Article  Google Scholar 

  11. Guo ZH et al (2020) Facile synthesis of ratiometric fluorescent carbon dots for pH visual sensing and cellular imaging. Talanta 216:8. https://doi.org/10.1016/j.talanta.2020.120943

    CAS  Article  Google Scholar 

  12. He LY, Shen ZP, Cao YT, Li TH, Wu DZ, Dong YR, Gan N (2019) A microfluidic chip based ratiometric aptasensor for antibiotic detection in foods using stir bar assisted sorptive extraction and rolling circle amplification. Analyst 144:2755–2764. https://doi.org/10.1039/c9an00106a

    CAS  Article  Google Scholar 

  13. Hu B, Hu L-L, Chen M-L, Wang J-H (2013) A FRET ratiometric fluorescence sensing system for mercury detection and intracellular colorimetric imaging in live Hela cells. Biosens Bioelectron 49:499–505. https://doi.org/10.1016/j.bios.2013.06.004

    CAS  Article  Google Scholar 

  14. Hu X, Zhou Q, Luo Y (2010) Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environ Pollut 158:2992–2998. https://doi.org/10.1016/j.envpol.2010.05.023

    CAS  Article  Google Scholar 

  15. Huang Y, Zhang P, Gao M, Zeng F, Qin A, Wu S, Tang BZ (2016) Ratiometric detection and imaging of endogenous hypochlorite in live cells and in vivo achieved by using an aggregation induced emission (AIE)-based nanoprobe. Chem Commun 52:7288–7291. https://doi.org/10.1039/c6cc03415b

    CAS  Article  Google Scholar 

  16. Jia L, Guo SL, Xu J, Chen XZ, Zhu TH, Zhao TQ (2019a) A ratiometric fluorescent nano-probe for rapid and specific detection of tetracycline residues based on a dye-doped functionalized nanoscaled metal-organic framework. Nanomaterials 9:11. https://doi.org/10.3390/nano9070976

    CAS  Article  Google Scholar 

  17. Jia P et al (2019b) A sensitive and selective approach for detection of tetracyclines using fluorescent molybdenum disulfide nanoplates. Food Chem 297:124969. https://doi.org/10.1016/j.foodchem.2019.124969

    CAS  Article  Google Scholar 

  18. Jing H et al (2020) A highly sensitive visual sensor for tetracycline in food samples by a double-signal response fluorescent nanohybrid. Food Control 108:106832. https://doi.org/10.1016/j.foodcont.2019.106832

    CAS  Article  Google Scholar 

  19. Klein EY et al (2018) Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci USA 115:E3463–E3470. https://doi.org/10.1073/pnas.1717295115

    CAS  Article  Google Scholar 

  20. Kummerer K (2009) Antibiotics in the aquatic environment-a review- Part II. Chemosphere 75:435–441. https://doi.org/10.1016/j.chemosphere.2008.12.006

    CAS  Article  Google Scholar 

  21. Lan L, Yao Y, Ping J, Ying Y (2017) Recent advances in nanomaterial-based biosensors for antibiotics detection. Biosens Bioelectron 91:504–514. https://doi.org/10.1016/j.bios.2017.01.007

    CAS  Article  Google Scholar 

  22. Lei H, Qi CX, Chen XB, Zhang T, Xu L, Liu B (2019) Ratiometric fluorescence determination of the anthrax biomarker 2,6-dipicolinic acid using a Eu3+/Tb3+-doped nickel coordination polymer. New J Chem 43:18259–18267. https://doi.org/10.1039/c9nj04501e

    CAS  Article  Google Scholar 

  23. Li C, Huang J, Zhu H, Liu L, Feng Y, Hu G, Yu X (2017a) Dual-emitting fluorescence of Eu/Zr-MOF for ratiometric sensing formaldehyde. Sens Actuators B 253:275–282. https://doi.org/10.1016/j.snb.2017.06.064

    CAS  Article  Google Scholar 

  24. Li HY et al (2018a) Microwave-assisted synthesis of highly luminescent N- and S-co-doped carbon dots as a ratiometric fluorescent probe for levofloxacin. Microchim Acta 185:7. https://doi.org/10.1007/s00604-017-2619-z

    CAS  Article  Google Scholar 

  25. Li W, Zhu J, Xie G, Ren Y, Zheng Y-Q (2018b) Ratiometric system based on graphene quantum dots and Eu3+ for selective detection of tetracyclines. Anal Chim Acta 1022:131–137. https://doi.org/10.1016/j.aca.2018.03.018

    CAS  Article  Google Scholar 

  26. Li X et al (2017b) Europium functionalized ratiometric fluorescent transducer silicon nanoparticles based on FRET for the highly sensitive detection of tetracycline. J Mater Chem C 5:2149–2152. https://doi.org/10.1039/c7tc00305f

    CAS  Article  Google Scholar 

  27. Li Y, Hu X, Zhang X, Cao H, Huang Y (2018c) Unconventional application of gold nanoclusters/Zn-MOF composite for fluorescence turn-on sensitive detection of zinc ion. Anal Chim Acta 1024:145–152. https://doi.org/10.1016/j.aca.2018.04.016

    CAS  Article  Google Scholar 

  28. Li YY, Du QQ, Zhang XD, Huang YM (2020) Ratiometric detection of tetracycline based on gold nanocluster enhanced Eu3+ fluorescence. Talanta 206:6. https://doi.org/10.1016/j.talanta.2019.120202

    CAS  Article  Google Scholar 

  29. Liu JH, Xue HY, Liu YN, Bu T, Jia P, Shui YH, Wang L (2019a) Visual and fluorescent detection of mercury ions using a dual-emission ratiometric fluorescence nanomixture of carbon dots cooperating with gold nanoclusters. Spectrochim Acta Part A 223:7. https://doi.org/10.1016/j.saa.2019.117364

    CAS  Article  Google Scholar 

  30. Liu X, Wang T, Wang W, Zhou Z, Yan Y (2019b) A tailored molecular imprinting ratiometric fluorescent sensor based on red/blue carbon dots for ultrasensitive tetracycline detection. J Ind Eng Chem 72:100–106. https://doi.org/10.1016/j.jiec.2018.12.007

    CAS  Article  Google Scholar 

  31. Liu Y, Tu D, Zhu H, Li R, Luo W, Chen X (2010) A strategy to achieve efficient dual-mode luminescence of Eu3+ in lanthanides doped multifunctional NaGdF4 nanocrystals. Adv Mater 22:3266. https://doi.org/10.1002/adma.201000128

    CAS  Article  Google Scholar 

  32. Liu Y, Zhao Y, Zhang Y (2014) One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper(II) ion detection. Sensors and Actuators B 196:647–652. https://doi.org/10.1016/j.snb.2014.02.053

    CAS  Article  Google Scholar 

  33. Luo Y, Xu J, Li Y, Gao H, Guo J, Shen F, Sun C (2015) A novel colorimetric aptasensor using cysteamine-stabilized gold nanoparticles as probe for rapid and specific detection of tetracycline in raw milk. Food Control 54:7–15. https://doi.org/10.1016/j.foodcont.2015.01.005

    CAS  Article  Google Scholar 

  34. Meng L, Lan CW, Liu ZH, Xu N, Wu YQ (2019) A novel ratiometric fluorescence probe for highly sensitive and specific detection of chlorotetracycline among tetracycline antibiotics. Anal Chim Acta 1089:144–151. https://doi.org/10.1016/j.aca.2019.08.065

    CAS  Article  Google Scholar 

  35. Mondal TK, Saha SK (2019) Facile approach to synthesize nitrogen- and oxygen-rich carbon quantum dots for ph sensor, fluorescent indicator, and invisible ink applications. ACS Sustain Chem Eng 7:19669–19678. https://doi.org/10.1021/acssuschemeng.9b04817

    CAS  Article  Google Scholar 

  36. Qiaoqiao S et al (2018) A SERS-based multiple immuno-nanoprobe for ultrasensitive detection of neomycin and quinolone antibiotics via a lateral flow assay. Microchim Acta 185:84. https://doi.org/10.1007/s00604-017-2556-x

    CAS  Article  Google Scholar 

  37. Qu F, Xia WL, Xia L, You JM, Han WL (2019) A ratiometric detection of heparin with high sensitivity based on aggregation-enhanced emission of gold nanoclusters triggered by silicon nanoparticles. Talanta 193:37–43. https://doi.org/10.1016/j.talanta.2018.09.098

    CAS  Article  Google Scholar 

  38. Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759. https://doi.org/10.1016/j.chemosphere.2006.03.026

    CAS  Article  Google Scholar 

  39. Song E, Yu M, Wang Y, Hu W, Cheng D, Swihart MT, Song Y (2015) Multi-color quantum dot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk. Biosens Bioelectron 72:320–325. https://doi.org/10.1016/j.bios.2015.05.018

    CAS  Article  Google Scholar 

  40. Su D, Wang M, Liu Q, Chen J, Su X (2019) Dual-emission ratio fluorescence detection of bleomycin based on nitrogen doped graphene quantum dots@gold nanoclusters assembly. Sens Actuators B 290:163–169. https://doi.org/10.1016/j.snb.2019.03.126

    CAS  Article  Google Scholar 

  41. Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils- a review. J Plant Nutr Soil Sci 166:145–167. https://doi.org/10.1002/jpln.200390023

    CAS  Article  Google Scholar 

  42. Tolls J (2001) Sorption of veterinary pharmaceuticals in soils: a review. Environ Sci Technol 35:3397–3406. https://doi.org/10.1021/es0003021

    CAS  Article  Google Scholar 

  43. Wang J et al (2019) Ratiometric fluorometric and visual determination of cyanide based on the use of carbon dots and gold nanoclusters. Microchim Acta 186:9. https://doi.org/10.1007/s00604-019-3803-0

    CAS  Article  Google Scholar 

  44. Wang Q-X, Xue S-F, Chen Z-H, Ma S-H, Zhang S, Shi G, Zhang M (2017) Dual lanthanide-doped complexes: the development of a time-resolved ratiometric fluorescent probe for anthrax biomarker and a paper-based visual sensor. Biosens Bioelectron 94:388–393. https://doi.org/10.1016/j.bios.2017.03.027

    CAS  Article  Google Scholar 

  45. Wang X, Dong S, Gai P, Duan R, Li F (2016) Highly sensitive homogeneous electrochemical aptasensor for antibiotic residues detection based on dual recycling amplification strategy. Biosens Bioelectron 82:49–54. https://doi.org/10.1016/j.bios.2016.03.055

    CAS  Article  Google Scholar 

  46. Wei S, Shijie L, Yue L, Junping W, Yan Z, Shuo W (2017) Visual and rapid lateral flow immunochromatographic assay for enrofloxacin using dyed polymer microspheres and quantum dots. Microchim Acta 184:4313–4321. https://doi.org/10.1007/s00604-017-2474-y

    CAS  Article  Google Scholar 

  47. Wei W, He J, Wang Y, Kong M (2019) Ratiometric method based on silicon nanodots and Eu3+ system for highly-sensitive detection of tetracyclines. Talanta 204:491–498. https://doi.org/10.1016/j.talanta.2019.06.036

    CAS  Article  Google Scholar 

  48. Wei X, Chen H (2019) Ratiometric fluorescence molecularly imprinted sensor based on dual-emission quantum dots hybrid for determination of tetracycline. Anal Bioanal Chem 411:5809–5816. https://doi.org/10.1007/s00216-019-01963-3

    CAS  Article  Google Scholar 

  49. Wong A, Santos AM, Cincotto FH, Moraes FC, Fatibello-Filho O, Sotomayor MDPT (2020) A new electrochemical platform based on low cost nanomaterials for sensitive detection of the amoxicillin antibiotic in different matrices. Talanta 206:120252. https://doi.org/10.1016/j.talanta.2019.120252

    CAS  Article  Google Scholar 

  50. Wu HF, Tong CL (2019) Ratiometric fluorometric determination of silver(I) by using blue-emitting silicon- and nitrogen-doped carbon quantum dots and red-emitting N-acetyl-L-cysteine-capped CdTe quantum dots. Microchim Acta 186:9. https://doi.org/10.1007/s00604-019-3818-6

    CAS  Article  Google Scholar 

  51. Xu HY, Zhang KN, Liu QS, Liu Y, Xie MX (2017) Visual and fluorescent detection of mercury ions by using a dually emissive ratiometric nanohybrid containing carbon dots and CdTe quantum dots. Microchim Acta 184:1199–1206. https://doi.org/10.1007/s00604-017-2099-1

    CAS  Article  Google Scholar 

  52. Xu J et al (2018) A novel visual ratiometric fluorescent sensing platform for highly-sensitive visual detection of tetracyclines by a lanthanide-functionalized palygorskite nanomaterial. J Hazard Mater 342:158–165. https://doi.org/10.1016/j.jhazmat.2017.08.020

    CAS  Article  Google Scholar 

  53. Xu X, Niu X, Li X, Li Z, Du D, Lin Y (2020) Nanomaterial-based sensors and biosensors for enhanced inorganic arsenic detection: a functional perspective. Sens Actuators B 315:128100. https://doi.org/10.1016/j.snb.2020.128100

    CAS  Article  Google Scholar 

  54. Xu XY, Yan B (2016) Fabrication and application of a ratiometric and colorimetric fluorescent probe for Hg2+ based on dual-emissive metal-organic framework hybrids with carbon dots and Eu3+. J Mater Chem C 4:1543–1549. https://doi.org/10.1039/c5tc04002g

    CAS  Article  Google Scholar 

  55. Yan FY, Bai ZJ, Liu F, Zu FL, Zhang RQ, Xu JX, Chen L (2018) Ratiometric fluorescence probes based on carbon dots. Curr Org Chem 22:57–66. https://doi.org/10.2174/1385272821666171005152058

    CAS  Article  Google Scholar 

  56. Yan YH et al (2015) Visualizing gaseous nitrogen dioxide by ratiometric fluorescence of carbon nanodots-quantum dots hybrid. Anal Chem 87:2087–2093. https://doi.org/10.1021/ac503474x

    CAS  Article  Google Scholar 

  57. Yang KC, Wang SS, Wang YY, Miao H, Yang XM (2017) Dual-channel probe of carbon dots cooperating with gold nanoclusters employed for assaying multiple targets. Biosens Bioelectron 91:566–573. https://doi.org/10.1016/j.bios.2017.01.014

    CAS  Article  Google Scholar 

  58. Yang L, Song Y, Wang L (2019) Multi-emission metal-organic framework composites for multicomponent ratiometric fluorescence sensing: recent developments and future challenges. J Mater Chem B. https://doi.org/10.1039/c9tb01931f

    Article  Google Scholar 

  59. Yao JL et al (2013) Efficient ratiometric fluorescence probe based on dual-emission quantum dots hybrid for on-site determination of copper ions. Anal Chem 85:6461–6468. https://doi.org/10.1021/ac401011r

    CAS  Article  Google Scholar 

  60. Zeng RJ, Tang Y, Zhang LJ, Luo ZB, Tang DP (2018) Dual-readout aptasensing of antibiotic residues based on gold nanocluster-functionalized MnO2 nanosheets with target-induced etching reaction. J Mater Chem B 6:8071–8077. https://doi.org/10.1039/c8tb02642d

    CAS  Article  Google Scholar 

  61. Zhou JW, Zou XM, Song SH, Chen GH (2018) Quantum dots applied to methodology on detection of pesticide and veterinary drug residues. J Agric Food Chem 66:1307–1319. https://doi.org/10.1021/acs.jafc.7b05119

    CAS  Article  Google Scholar 

Download references

Acknowledgements

F.P. thanks for the support from National Natural Science Foundation of China (No. 21603087), Natural Science Foundation of Jiangsu Province (No. BK20160178), Young Professionals of “Thousand Talents Plan” project, and “Lv Yang Jin Feng” project of Yangzhou City (Jiangsu, China). Also, this work was financially supported by the Innovation and Entrepreneurship Projects and Six Talent Peaks Project of Jiangsu Province (No. SWYY-023).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Fuwei Pi or Xiulan Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Li, Y., Liu, L. et al. Current Progress on Antibiotic Sensing Based on Ratiometric Fluorescent Sensors. Bull Environ Contam Toxicol 107, 176–184 (2021). https://doi.org/10.1007/s00128-020-02946-2

Download citation

Keywords

  • Antibiotics
  • Detection sensor
  • Ratiometric fluorescent
  • Visual detection