Skip to main content

Growth, Survival and Biomass Production of Barley in a Polluted Mine Soil Amended with Biochar and Animal Manure

Abstract

In the present study, sheep manure (0%, 10% and 20% w/w) and biochar derived from coniferous tree woods (0%, 2.5% and 5% w/w) were incorporated into a multi-MTE contaminated soil from a former iron mine site and incubated for 10 days. A seeds of barley were grown in the amended soil and different morphological traits were measured after 30 days. Results indicated that MTE stress reduced the shoot length, stem diameter, leaf area, number of leaves and dry biomass as compared to the control. Organic amendments application increased soil pH and was found to affect significantly almost all the measured parameters. Animal manure was found effective in improvement of the morphological characteristics of barley plants comparing to biochar amendments. Our results suggested that animal manure could be used for reducing the effect of MTE on the morphological proprieties of barley grown in a former iron mine soil.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abbas T, Rizwan M, Ali S et al (2017) Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination. Ecotoxicol Environ Saf 140:37–47. https://doi.org/10.1016/j.ecoenv.2017.02.028

    Article  CAS  Google Scholar 

  2. Abbas T, Rizwan M, Ali S et al (2018a) Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. Ecotoxicol Environ Saf 148:825–833. https://doi.org/10.1016/j.ecoenv.2017.11.063

    Article  CAS  Google Scholar 

  3. Abbas T, Rizwan M, Ali S et al (2018b) Effect of biochar on alleviation of cadmium toxicity in wheat (Triticum aestivum L.) grown on Cd-contaminated saline soil. Environ Sci Pollut Res 25:25668–25680. https://doi.org/10.1007/s11356-017-8987-4

    Article  CAS  Google Scholar 

  4. Abdus Salam MM, Mohsin M, Pulkkinen P et al (2019) Effects of soil amendments on the growth response and phytoextraction capability of a willow variety (S. viminalis × S. schwerinii × S. dasyclados) grown in contaminated soils. Ecotoxicol Environ Saf 171:753–770. https://doi.org/10.1016/j.ecoenv.2019.01.045

    Article  CAS  Google Scholar 

  5. Afshan AS, Imran M et al (2019) Role of phosphorous mining in mobilization and bioaccessibility of heavy metals in soil-plant system: abbottabad. Pak Arab J Geosci. https://doi.org/10.1007/s12517-019-4479-9

    Article  Google Scholar 

  6. Agegnehu G, Nelson PN, Bird MI (2016) The effects of biochar, compost and their mixture and nitrogen fertilizer on yield and nitrogen use efficiency of barley grown on a Nitisol in the highlands of Ethiopia. Sci Total Environ 569–570:869–879.https://doi.org/10.1016/j.scitotenv.2016.05.033

    Article  CAS  Google Scholar 

  7. Ahanger MA, Akram NA, Ashraf M et al (2017) Plant responses to environmental stresses-from gene to biotechnology. AoB Plants. https://doi.org/10.1093/aobpla/plx025

    Article  Google Scholar 

  8. Al-Wabel MI, Usman ARA, El-Naggar AH et al (2015) Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants. Saudi J Biol Sci 22:503–511. https://doi.org/10.1016/j.sjbs.2014.12.003

    Article  CAS  Google Scholar 

  9. Anjum SA, Ashraf U, Khan I et al (2016) Chromium and aluminum phytotoxicity in maize: morpho-physiological responses and metal uptake. Clean-Soil, Air, Water 44:1075–1084. https://doi.org/10.1002/clen.201500532

    Article  CAS  Google Scholar 

  10. Ashraf U, Tang X (2017) Yield and quality responses, plant metabolism and metal distribution pattern in aromatic rice under lead (Pb) toxicity. Chemosphere 176:141–155. https://doi.org/10.1016/j.chemosphere.2017.02.103

    Article  CAS  Google Scholar 

  11. Azhar M, ur Rehman MZ, Ali S et al (2019) Comparative effectiveness of different biochars and conventional organic materials on growth, photosynthesis and cadmium accumulation in cereals. Chemosphere 227:72–81.https://doi.org/10.1016/j.chemosphere.2019.04.041

    Article  CAS  Google Scholar 

  12. Bae J, Benoit DL, Watson AK (2016) Effect of heavy metals on seed germination and seedling growth of common ragweed and roadside ground cover legumes. Environ Pollut 213:112–118. https://doi.org/10.1016/j.envpol.2015.11.041

    Article  CAS  Google Scholar 

  13. Barati M, Bakhtiari F, Mowla D, Safarzadeh S (2018) Comparison of the effects of poultry manure and its biochar on barley growth in petroleum-contaminated soils. Int J Phytoremediat 20:98–103. https://doi.org/10.1080/15226514.2017.1337069

    Article  Google Scholar 

  14. Bellouti A, Cherkaoui F, Benhida M, et al (2002) Mise en place d’un systéme de suivi et de surveillance de la qualité des eaux souterraines et des sols dans le périmètre irrigué du Tadla, au Maroc. Serge Marlet, Pierre Ruelle. Atelier du PCSI (Programme Commun Systèmes Irrigués) sur une Maîtrise des Impacts Environnementaux de l’Irrigation, Montpellier, France. Cirad - IRD - Cemagref, 11 p

  15. Boi ME, Porceddu M, Cappai G et al (2019) Effects of zinc and lead on seed germination of Helichrysum microphyllum subsp. tyrrhenicum, a metal-tolerant plant. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-019-02589-9

    Article  Google Scholar 

  16. Bopp C, Christl I, Schulin R, Evangelou MWH (2016) Biochar as possible long-term soil amendment for phytostabilisation of TE-contaminated soils. Environ Sci Pollut Res 23:17449–17458. https://doi.org/10.1007/s11356-016-6935-3

    Article  CAS  Google Scholar 

  17. Bouqbis L, Daoud S, Koyro HW et al (2017) Phytotoxic effects of argan shell biochar on salad and barley germination. Agric Nat Resour 51:247–252. https://doi.org/10.1016/j.anres.2017.04.001

    Article  Google Scholar 

  18. Brennan A, Jiménez EM, Puschenreiter M, Alburquerque JA (2014) Effects of biochar amendment on root traits and contaminant availability of maize plants in a copper and arsenic impacted soil. Plant Soil. https://doi.org/10.1007/s11104-014-2074-0

    Article  Google Scholar 

  19. Chilasse L, Dakki M, Abassi M (2001) Valeurs et fonctions écologiques des Zones humides du Moyen Atlas ( Maroc ). Humed Mediterr 1:139–146

    Google Scholar 

  20. El Rasafi T, Nouri M, Bouda S, Haddioui A (2016) The effect of Cd, Zn and Fe on seed germination and early seedling growth of wheat and bean. Ekológia (Bratislava) 35:213–223. https://doi.org/10.1515/eko-2016-0017

    Article  Google Scholar 

  21. Elleuch A, Chaâbene Z, Grubb DC et al (2013) Morphological and biochemical behavior of fenugreek (Trigonella foenum-graecum) under copper stress. Ecotoxicol Environ Saf 98:46–53. https://doi.org/10.1016/j.ecoenv.2013.09.028

    Article  CAS  Google Scholar 

  22. Elouear Z, Bouhamed F, Boujelben N, Bouzid J (2016) Application of sheep manure and potassium fertilizer to contaminated soil and its effect on zinc, cadmium and lead accumulation by alfalfa plants. Sustain Environ Res 26:131–135. https://doi.org/10.1016/j.serj.2016.04.004

    Article  CAS  Google Scholar 

  23. Faloye OT, Alatise MO, Ajayi AE, Ewulo BS (2019) Effects of biochar and inorganic fertiliser applications on growth, yield and water use efficiency of maize under deficit irrigation. Agric Water Manage 217:165–178. https://doi.org/10.1016/j.agwat.2019.02.044

    Article  Google Scholar 

  24. Farhangi-Abriz S, Torabian S (2018) Effect of biochar on growth and ion contents of bean plant under saline condition. Environ Sci Pollut Res 25:11556–11564. https://doi.org/10.1007/s11356-018-1446-z

    Article  Google Scholar 

  25. Farid M, Shakoor MB, Ehsan S et al (2013) Morphological, physiological and biochemical responses of different plant species to Cd stress. Int J Chem Biochem Sci 3:53–60

    Google Scholar 

  26. Foster EJ, Hansen N, Wallenstein M, Cotrufo MF (2016) Biochar and manure amendments impact soil nutrients and microbial enzymatic activities in a semi-arid irrigated maize cropping system. Agric Ecosyst Environ 233:404–414. https://doi.org/10.1016/j.agee.2016.09.029

    Article  Google Scholar 

  27. Gavili E, Moosavi AA, Kamgar Haghighi AA (2019) Does biochar mitigate the adverse effects of drought on the agronomic traits and yield components of soybean? Ind Crops Prod 128:445–454. https://doi.org/10.1016/j.indcrop.2018.11.047

    Article  CAS  Google Scholar 

  28. Ghassemi-Golezani K, Farhangi-Abriz S (2019) Biochar alleviates fluoride toxicity and oxidative stress in safflower (Carthamus tinctorius L.) seedlings. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.02.087

    Article  Google Scholar 

  29. Hafeez F, Rizwan M, Saqib M et al (2019) Residual effect of biochar on growth, antioxidant defence and cadmium (Cd) accumulation in rice in a Cd contaminated saline soil. Pak J Agric Sci 56:197–204. https://doi.org/10.21162/PAKJAS/19.7546

    Article  Google Scholar 

  30. Hamid Y, Tang L, Wang X et al (2018) Immobilization of cadmium and lead in contaminated paddy field using inorganic and organic additives. Sci Rep 8:17839. https://doi.org/10.1038/s41598-018-35881-8

    Article  CAS  Google Scholar 

  31. Herath I, Kumarathilaka P, Navaratne A et al (2014) Immobilization and phytotoxicity reduction of heavy metals in serpentine soil using biochar. J Soils Sedim 15:126–138. https://doi.org/10.1007/s11368-014-0967-4

    Article  CAS  Google Scholar 

  32. Huang M, Zhang Z, Zhai Y et al (2019a) Effect of straw biochar on soil properties and wheat production under salinewater irrigation. Agronomy 9:1–15. https://doi.org/10.3390/agronomy9080457

    Article  CAS  Google Scholar 

  33. Huang Q, Wan Y, Luo Z et al (2019b) Cadmium in the soil-rice system The effects of chicken manure on the immobilization and bioavailability of cadmium in the soil-rice system. Arch Agron Soil Sci. https://doi.org/10.1080/03650340.2019.1694146

    Article  Google Scholar 

  34. Jia W, Wang C, Ma C et al (2019) Mineral elements uptake and physiological response of Amaranthus mangostanus (L.) as affected by biochar. Ecotoxicol Environ Saf 175:58–65. https://doi.org/10.1016/j.ecoenv.2019.03.039

    Article  CAS  Google Scholar 

  35. Juknys R, Račaitė M (2010) Cross-adaptation of spring barley (Hordeum vulgare L.) to environmental stress induced by heavy metals. Ekologija 56:1–9. https://doi.org/10.2478/v10055-010-0001-0

    Article  CAS  Google Scholar 

  36. Kalai T, Bouthour D, Manai J et al (2015) Salicylic acid alleviates the toxicity of cadmium on seedling growth, amylases and phosphatases activity in germinating barley seeds. Arch Agron Soil Sci 62:892–940. https://doi.org/10.1080/03650340.2015.1100295

    Article  CAS  Google Scholar 

  37. Kamran M, Malik Z, Parveen A et al (2019) Biochar alleviates Cd phytotoxicity by minimizing bioavailability and oxidative stress in pak choi (Brassica chinensis L.) cultivated in Cd-polluted soil. J Environ Manage 250:109500.https://doi.org/10.1016/j.jenvman.2019.109500

    Article  CAS  Google Scholar 

  38. Kanwal S, Ilyas N, Shabir S et al (2018) Application of biochar in mitigation of negative effects of salinity stress in wheat (Triticum aestivum L.). J Plant Nutr 41:526–538. https://doi.org/10.1080/01904167.2017.1392568

    Article  CAS  Google Scholar 

  39. Khan MIS, Li XHG (2016) Biochar effects on metal bioaccumulation and arsenic speciation in alfalfa (Medicago sativa L.) grown in contaminated soil. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-016-1081-5

    Article  Google Scholar 

  40. Kim HS, Kim KR, Kim HJ et al (2015) Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil. Environ Earth Sci 74:1249–1259. https://doi.org/10.1007/s12665-015-4116-1

    Article  CAS  Google Scholar 

  41. Ling T, Gao Q, Du H et al (2017) Growing, physiological responses and Cd uptake of Corn (Zea mays L.) under different Cd supply. Chem Speciat Bioavailab 29:216–221. https://doi.org/10.1080/09542299.2017.1400924

    Article  CAS  Google Scholar 

  42. Lucchini P, Quilliam RS, DeLuca TH et al (2014) Does biochar application alter heavy metal dynamics in agricultural soilα. Agric Ecosyst Environ 184:149–157.https://doi.org/10.1016/j.agee.2013.11.018

    Article  CAS  Google Scholar 

  43. Majeed A, Muhammad Z, Siyar S (2018) Assessment of heavy metal induced stress responses in pea (Pisum sativum L.). Acta Ecol Sin. https://doi.org/10.1016/j.chnaes.2018.12.002

    Article  Google Scholar 

  44. Marques CR, Caetano AL, Haller A et al (2014) Toxicity screening of soils from different mine areas—A contribution to track the sensitivity and variability of Arthrobacter globiformis assay. J Hazard Mater 274:331–341. https://doi.org/10.1016/j.jhazmat.2014.03.066

    Article  CAS  Google Scholar 

  45. Martínez JM, Galantini JA, Duval ME et al (2018) Estimating soil organic carbon in Mollisols and its particle-size fractions by loss-on-ignition in the semiarid and semihumid Argentinean Pampas. Geod Reg 12:49–55. https://doi.org/10.1016/j.geodrs.2017.12.004

    Article  Google Scholar 

  46. Marzban L, Akhzari D, Ariapour A et al (2017) Effects of cadmium stress on seedlings of various rangeland plant species (Avena fatua L., Lathyrus sativus L., and Lolium temulentum L.): Growth, physiological traits, and cadmium accumulation. J Plant Nutr 40:2127–2137. https://doi.org/10.1080/01904167.2016.1269347

    Article  CAS  Google Scholar 

  47. Nandillon R, Lebrun M, Miard F et al (2019) Capability of amendments (biochar, compost and garden soil) added to a mining technosol contaminated by Pb and As to allow poplar seed (Populus nigra L.) germination. Environ Monit Assess. https://doi.org/10.1007/s10661-019-7561-6

    Article  Google Scholar 

  48. Nedjimi B (2019) Germination characteristics of Peganum harmala L. (Nitrariaceae) subjected to heavy metals: implications for the use in polluted dryland restoration. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-019-02600-3

    Article  Google Scholar 

  49. Nguyen BT, Trinh NN, Le CMT et al (2018) The interactive effects of biochar and cow manure on rice growth and selected properties of salt-affected soil. Arch Agron Soil Sci 64:1744–1758. https://doi.org/10.1080/03650340.2018.1455186

    Article  Google Scholar 

  50. Nouri M, Gonçalves F, Sousa JP et al (2014) Metal concentrations and metal mobility in Ait Ammar Moroccan mining site. J Mater Environ Sci 5:271–280

    CAS  Google Scholar 

  51. Nouri M, El Rasafi T, Haddioui A (2019) Responses of two barley subspecies to in vitro-induced heavy metal stress: seeds germination, seedlings growth and cytotoxicity assay. Agriculture 65:107–118. https://doi.org/10.2478/agri-2019-0011

    Article  Google Scholar 

  52. Novak JM, Ippolito JA, Watts DW et al (2019) Biochar compost blends facilitate switchgrass growth in mine soils by reducing Cd and Zn bioavailability. Biochar 1:97–114. https://doi.org/10.1007/s42773-019-00004-7

    Article  Google Scholar 

  53. Paneque M, De la Rosa JM, Franco-Navarro JD et al (2016) Effect of biochar amendment on morphology, productivity and water relations of sunflower plants under non-irrigation conditions. CATENA 147:280–287. https://doi.org/10.1016/j.catena.2016.07.037

    Article  CAS  Google Scholar 

  54. Park JH, Lamb D, Paneerselvam P et al (2011) Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J Hazard Mater 185:549–574. https://doi.org/10.1016/j.jhazmat.2010.09.082

    Article  CAS  Google Scholar 

  55. Pereira R, Antunes SC, Marques SM, Gonçalves F (2008) Contribution for tier 1 of the ecological risk assessment of Cunha Baixa uranium mine (Central Portugal): I Soil chemical characterization. Sci Total Environ 390:377–386. https://doi.org/10.1016/j.scitotenv.2007.08.051

    Article  CAS  Google Scholar 

  56. Pereira R, Marques CR, Ferreira MJS et al (2009) Phytotoxicity and genotoxicity of soils from an abandoned uranium mine area. Appl Soil Ecol 42:209–220. https://doi.org/10.1016/j.apsoil.2009.04.002

    Article  Google Scholar 

  57. Qambrani NA, Rahman MM, Won S et al (2017) Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: a review. Renew Sustain Energy Rev 79:255–273. https://doi.org/10.1016/j.rser.2017.05.057

    Article  CAS  Google Scholar 

  58. Qayyum MF, Liaquat F, Rehman RA et al (2017) Effects of co-composting of farm manure and biochar on plant growth and carbon mineralization in an alkaline soil. Environ Sci Pollut Res 24:26060–26068. https://doi.org/10.1007/s11356-017-0227-4

    Article  CAS  Google Scholar 

  59. Rehman MZU, Rizwan M, Ali S et al (2016) Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake. Ecotoxicol Environ Saf 133:218–225. https://doi.org/10.1016/j.ecoenv.2016.07.023

    Article  CAS  Google Scholar 

  60. Rehman ur MZ, Zafar M, Waris AA et al (2020) Residual effects of frequently available organic amendments on cadmium bioavailability and accumulation in wheat. Chemosphere 244:125548. https://doi.org/10.1016/j.chemosphere.2019.125548

    Article  CAS  Google Scholar 

  61. Rizwan M, Ali S, Adrees M et al (2016a) Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environ Sci Pollut Res 23:17859–17879. https://doi.org/10.1007/s11356-016-6436-4

    Article  CAS  Google Scholar 

  62. Rizwan M, Ali S, Qayyum MF et al (2016b) Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environ Sci Pollut Res 23:2230–2248. https://doi.org/10.1007/s11356-015-5697-7

    Article  CAS  Google Scholar 

  63. Rizwan M, Ali S, Adrees M et al (2017) A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere 182:90–105. https://doi.org/10.1016/j.chemosphere.2017.05.013

    Article  CAS  Google Scholar 

  64. Rizwan M, Ali S, Abbas T et al (2018a) Residual effects of biochar on growth, photosynthesis and cadmium uptake in rice (Oryza sativa L.) under Cd stress with different water conditions. J Environ Manage 206:676–683. https://doi.org/10.1016/j.jenvman.2017.10.035

    Article  CAS  Google Scholar 

  65. Rizwan M, Ali S, Abbas T et al (2018b) Residual impact of biochar on cadmium uptake by rice (Oryza sativa L.) grown in Cd-contaminated soil. Arab J Geosci. https://doi.org/10.1007/s12517-018-3974-8

    Article  Google Scholar 

  66. Sanal F, Şeren G, Guuner U (2014) Effects of arsenate and arsenite on germination and some physiological attributes of barley Hordeum vulgare L. Bull Environ Contam Toxicol 92:483–489. https://doi.org/10.1007/s00128-014-1214-9

    Article  CAS  Google Scholar 

  67. Saqib SA, Li G, Andersen MN, Liu F (2014) Biochar enhances yield and quality of tomato under reduced irrigation. Agric Water Manage 138:37–44.https://doi.org/10.1016/j.agwat.2014.02.016

    Article  Google Scholar 

  68. Sheoran V, Sheoran AS, Poonia P (2016) Factors affecting phytoextraction: a review. Pedosphere 26:148–166. https://doi.org/10.1016/S1002-0160(15)60032-7

    Article  CAS  Google Scholar 

  69. Shepherd JG, Buss W, Sohi SP, Heal KV (2017) Bioavailability of phosphorus, other nutrients and potentially toxic elements from marginal biomass-derived biochar assessed in barley (Hordeum vulgare) growth experiments. Sci Total Environ 584–585:448–457. https://doi.org/10.1016/j.scitotenv.2017.01.028

    Article  CAS  Google Scholar 

  70. Silva Gonzaga MI, Oliveira da Silva PS, de Jesus C, Santos J, de Oliveira G, Junior LF (2019) Biochar increases plant water use efficiency and biomass production while reducing Cu concentration in Brassica juncea L. in a Cu-contaminated soil. Ecotoxicol Environ Saf 183:109557. https://doi.org/10.1016/j.ecoenv.2019.109557

    Article  CAS  Google Scholar 

  71. Soares C, Branco-Neves S, de Sousa A et al (2018) SiO2 nanomaterial as a tool to improve Hordeum vulgare L. tolerance to nano-NiO stress. Sci Total Environ 622–623:517–525. https://doi.org/10.1016/j.scitotenv.2017.12.002

    Article  CAS  Google Scholar 

  72. Tadesse K, Mekonnen A, Admasu A et al (2018) Malting barley response to integrated organic and mineral nutrient sources in Nitisol. Int J Recycl Org Waste Agric 7:125–134. https://doi.org/10.1007/s40093-018-0198-6

    Article  Google Scholar 

  73. Uzoma KC, Inoue M, Andry H et al (2011) Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manage 27:205–212. https://doi.org/10.1111/j.1475-2743.2011.00340.x

    Article  Google Scholar 

  74. Vaccari FP, Baronti S, Lugato E et al (2011) Biochar as a strategy to sequester carbon and increase yield in durum wheat. Eur J Agron 34:231–238. https://doi.org/10.1016/j.eja.2011.01.006

    Article  CAS  Google Scholar 

  75. Wang M, Zou J, Duan X et al (2007) Cadmium accumulation and its effects on metal uptake in maize (Zea mays L.). Bioresour Technol 98:82–88. https://doi.org/10.1016/j.biortech.2005.11.028

    Article  CAS  Google Scholar 

  76. Woldetsadik D, Drechsel P, Keraita B et al (2016) Effects of biochar and alkaline amendments on cadmium immobilization, selected nutrient and cadmium concentrations of lettuce (Lactuca sativa) in two contrasting soils. Springerplus. https://doi.org/10.1186/s40064-016-2019-6

    Article  Google Scholar 

  77. Xu P, Sun CX, Ye XZ et al (2016) The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil. Ecotoxicol Environ Saf 132:94–100. https://doi.org/10.1016/j.ecoenv.2016.05.031

    Article  CAS  Google Scholar 

  78. Yildirim D, Sasmaz A (2016) Phytoremediation of As, Ag, and Pb in contaminated soils using terrestrial plants grown on Gumuskoy mining area (Kutahya Turkey). J Geochem Explor. https://doi.org/10.1016/j.gexplo.2016.11.005

    Article  Google Scholar 

  79. Ying W, Zhong B, Shafi M et al (2019) Effects of biochar on growth, and heavy metals accumulation of moso bamboo (Phyllostachy pubescens), soil physical properties, and heavy metals solubility in soil. Chemosphere. https://doi.org/10.1016/j.chemosphere.2018.11.159

    Article  Google Scholar 

  80. Younis U, Malik SA, Rizwan M et al (2016) Biochar enhances the cadmium tolerance in spinach (Spinacia oleracea) through modification of Cd uptake and physiological and biochemical attributes. Environ Sci Pollut Res 23:21385–21394.https://doi.org/10.1007/s11356-016-7344-3

    Article  CAS  Google Scholar 

  81. Zhu X, Chen B, Zhu L, Xing B (2017) Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review. Environ Pollut 227:98–115. https://doi.org/10.1016/j.envpol.2017.04.032

    Article  CAS  Google Scholar 

  82. Zuchi S, Cesco S, Gottardi S et al (2011) The root-hairless barley mutant brb used as model for assessment of role of root hairs in iron accumulation. Plant Physiol Biochem 49:506–512. https://doi.org/10.1016/j.plaphy.2010.12.005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. NOURI Mohamed (Department of Biology, Faculty of Polydisciplinary, University of Sultan MoulaySlimane, Beni-Mellal) and Prof. BOUDA Said (Department of Biology, Faculty of Science and Techniques, University of Sultan MoulaySlimane, Beni-Mellal,) for their valuable suggestions and their contributions to the overall arrangement of the experiment

Author information

Affiliations

Authors

Corresponding author

Correspondence to Taoufik El Rasafi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El Rasafi, T., Haddioui, A. Growth, Survival and Biomass Production of Barley in a Polluted Mine Soil Amended with Biochar and Animal Manure. Bull Environ Contam Toxicol 105, 155–165 (2020). https://doi.org/10.1007/s00128-020-02914-w

Download citation

Keywords

  • Contaminated soil
  • Mine area
  • Metal toxicity
  • Morphological traits
  • Plant improvement