Skip to main content

PAH Profiles in Suspended Particulate Matter from an Urbanized River Within the Brazilian Amazon

Abstract

The distribution, seasonal variation and sources of 16 polycyclic aromatic hydrocarbons (PAH) from suspended particulate matter (SPM) of the Aurá River, a small amazon typical river located in Northern Brazil, were determined. Gas chromatography–mass spectrometry analysis of SPM revealed a mixture of PAH from different origins and a seasonal variation of PAH primary source for the studied area. Pyrene was the dominant PAH in both studied periods. Total PAH content (ΣPAH) ranged from lower than quantification limit (< LOQ) to 2498.2 ng g−1 dw during the dry season and < LOQ to 2865.8 ng g−1 dw during the wet season. Low molecular weight PAH (LMW) represented 51% of ΣPAH during the dry season and 29% during the wet season. It was noted, by comparing previous data, that the main source of these compounds was altered after the deactivation of an irregular landfill next to the river.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alcántara MT, Goméz J, Pazos M, Sanromán A (2009) PAHs soil decontamination in two steps: desorption and electrochemical treatment. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2008.11.050

    Article  Google Scholar 

  2. Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2014) Koppen’s climate classification map for Brazil. Meteorol Z. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  3. Barbosa JCS, Santos LGGV, Sant'Anna MVS, Souza MRR, Damasceno FC, Alexandre MR (2016) Seasonal distribution of aliphatic hydrocarbons in the Vaza Barris estuarine system, Sergipe, Brazil. Mar Pollut Bull. https://doi.org/10.1016/j.marpolbul.2016.01.037

    Article  Google Scholar 

  4. Budzinski H, Jones I, Bellocq J, Piérard C, Garrigues P (1997) Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde Estuary. Mar Chem. https://doi.org/10.1016/S0304-4203(97)00028-5

    Article  Google Scholar 

  5. Çabuk H, Kilic MS, Oren M (2014) Biomonitoring of polycyclic aromatic hydrocarbons in urban and industrial environment of the Western Black Sea Region, Turkey. Environ Monit Assess. https://doi.org/10.1007/s10661-013-3470-2

    Article  Google Scholar 

  6. Cazier F, Genevray P, Dewaele D, Nouali H, Verdin A, Ledoux F, Hachimi A, Courcot L, Billet S, Bouhsina S, Shirali P, Garçon G, Courcot D (2016) Characterisation and seasonal variations of particles in the atmosphere of rural, urban and industrial areas: organic compounds. Int J Environ Sci. https://doi.org/10.1016/j.jes.2016.01.014

    Article  Google Scholar 

  7. Chen Y, Zhu L, Zhou R (2007) Characterization and distribution of polycyclic aromatic hydrocarbon in surface water and sediment from Qiantang River, China. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2006.06.106

    Article  Google Scholar 

  8. Dean-Ross D, Moody JD, Freeman JP, Doerge DR, Cerniglia CE (2001) Metabolism of anthracene by a Rhodococcus species. FEMS Microbiol Lett. https://doi.org/10.1111/j.1574-6968.2001.tb10886.x

    Article  Google Scholar 

  9. Dias AN, SimãoV MJ, Carasek E (2013) Cork as a new (green) coating for solidphase microextraction: determination of polycyclic aromatic hydrocarbons in water samples by gas chromatography–mass spectrometry. Anal Chim Acta. https://doi.org/10.1016/j.aca.2013.02.021

    Article  Google Scholar 

  10. Donagema GK, Campos DVB, Calderano SB, Teixeira WG, Viana JHM (2011) Manual de métodos de análise do solo. Embrapa Solos, Rio de Janeiro

    Google Scholar 

  11. Dume B, Ayele D, Regassa A, Berecha G (2017) Improving available phosphorus in acidic soil using biochar. J Soil Sci. https://doi.org/10.5897/jssem2015.0540

    Article  Google Scholar 

  12. Ferreira MMC (2001) Polycyclic aromatic hydrocarbons: a QSPR study. Chemosphere. https://doi.org/10.1016/s0045-6535(00)00275-7

    Article  Google Scholar 

  13. Garon D, Krivobok S, Wouessidjewe D, Seigle-Murandi F (2002) Influence of surfactants on solubilization and fungal degradation of fluorene. Chemosphere. https://doi.org/10.1016/s0045-6535(01)00299-5

    Article  Google Scholar 

  14. Gregg T, Prahl FG, Simoneit BRT (2015) Suspended particulate matter transport of polycyclic aromatic hydrocarbons in the lower Columbia River and its estuary. Limnol Oceanogr. https://doi.org/10.1002/lno.10144

    Article  Google Scholar 

  15. Gschwend PA, Hites RA (1981) Fluxes of polycyclic aromatic hydrocarbons to marine and lacustrine sediments in The Northern United States. Geochim Cosmochim Ac. https://doi.org/10.1016/0016-7037(81)90089-2

    Article  Google Scholar 

  16. Harrison RM, Smith DJT, Luhana L (1996) Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environ Sci Technol. https://doi.org/10.1021/es950252d

    Article  Google Scholar 

  17. Headley JV, Akre C, Conly FM, Peru KM, Dickson LC (2001) Preliminary characterization and source assessment of PAHs in tributary sediments of the Athabasca River, Canada. Environ Forensics. https://doi.org/10.1006/enfo.2001.0064

    Article  Google Scholar 

  18. International Agency for Research on Cancer—IARC (1987) Polynuclear aromatic compounds PART 1. Chem Environ Exp data 32

  19. Kluczkovski AMRG (2015) Introdução ao estudo da poluição dos ecossistemas. InterSaberes, Curitiba

    Google Scholar 

  20. Lakhani A (2012) Source apportionment of particle bound polycyclic aromatic hydrocarbons at an industrial location in Agra, India. Sci World J. https://doi.org/10.1100/2012/781291

    Article  Google Scholar 

  21. Lindgren JF, Hassellöv IM, Dahllöf I (2014) PAH effects onmeio- andmicrobial benthic communities strongly depend on bioavailability. Aquat Toxicol. https://doi.org/10.1016/j.aquatox.2013

    Article  Google Scholar 

  22. Liu N, Li X, Zhang D, Liu Q, Xiang L, Liu K, Yan D, Li Y (2016) Distribution, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons in surface sediments from the Nantong Coast, China. Mar Pollut Bull. https://doi.org/10.1016/j.marpolbul.2016.09.020

    Article  Google Scholar 

  23. Locatelli MAF (2006) Investigação sobre a emissão e caracterização dos hidrocarbonetos policíclicos aromáticos (HPA) na bacia do rio Atibaia. Campinas, SP: Chemical Institute, Campinas State University, p 86 (Master Dissertation).

  24. Matos FO, Pinheiro LPS, Morales GP, Vasconcelos RC, Moura QL (2011) Influência da maré na dissolução de poluentes gerados no depósito de resíduos sólidos da região metropolitana de Belém-PA. Enciclopédia Biosfera 7:1166–1176

    Google Scholar 

  25. Medeiros PM, Bícego MC (2004) Investigation of natural and anthropogenic hydrocarbon inputs in sediments using geochemical markers: Santos, SP-Brazil. Mar Pollut Bull. https://doi.org/10.1016/j.marpolbul.2004.06.001

    Article  Google Scholar 

  26. Naes K, Knutzen J, Berglind L (1995) Occurrence of PAH in marine organisms and sediments from smelter discharge in Norway. Sci Total Environ. https://doi.org/10.1016/0048-9697(95)04490-R

    Article  Google Scholar 

  27. Neves PA, Ferreira PAL, Bícego MC, Figueira MCL (2014) Radioanalytical assessment of sedimentation rates in Guajará Bay (Amazon Estuary, N Brazil): a study with unsupported 210Pb and 137Cs modeling. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-013-2834-y

    Article  Google Scholar 

  28. Otte JC, Keiter S, Faßbender C, Higley EB, Rocha PS, Brinkmann M, Wahrendorf D, Manz W, Wetzel MA, Braunbeck T, Giesy JP, Hecker M, Hollert H, Pan X (2013) Contribution of priority PAHs and POPs to Ah receptor-mediated activities in sediment samples from the river Elbe Estuary, Germany. PLoS ONE. https://doi.org/10.1371/journal.pone.0075596

    Article  Google Scholar 

  29. Page DS, Boehm PD, Douglas GS, Bence AE, Burns WA, Mankiewicz PJ (1999) Pyrogenic polycyclic aromatic hydrocarbons in sediments record past human activity: a case study in Prince William Sound, Alaska. Mar Pollut Bull 1:2. https://doi.org/10.1016/S0025-326X(98)00142-8

    Article  Google Scholar 

  30. Qiu YW, Zhang G, Liu GQ (2009) PAHs in water column and sediment core of Deep Bay, South China. Estuar Coast Shelf Sci. https://doi.org/10.1016/j.ecss.2009.03.018

    Article  Google Scholar 

  31. Ranney RW (1969) Organic carbon-organic matter conversion equation for Pennsylvania surface soils. Soil Sci Soc Am Proc. https://doi.org/10.2136/sssaj1969.03615995003300050049x

    Article  Google Scholar 

  32. Readman JW, Fillmann G, Tolosa I, Bartocci J, Villeneuve JP, Catinni C, Mee LD (2002) Petroleum and PAH contamination of the Black Sea. Mar Pollut Bull. https://doi.org/10.1016/S0025-326X(01)00189-8

    Article  Google Scholar 

  33. Ribani M, Bottoli CBG, Collins CH, Jardim ICSF, Melo LFC (2004) Validação em métodos cromatográficos e eletroforéticos. Química Nova. https://doi.org/10.1590/S0100-40422004000500017

    Article  Google Scholar 

  34. Rodrigues CCS, Santos E, Ramos BS, Damasceno FC, Correa JAM (2018a) PAH Baselines for Amazonic Surficial Sediments: A Case of Study in Guajará Bay and Guamá River (Northern Brazil). Bull Environ Contam Toxicol. https://doi.org/10.1007/s00128-018-2343-3

    Article  Google Scholar 

  35. Rodrigues CCS, Santos LGG, Santos E, Damasceno FC, Corrêa JAM (2018b) Polycyclic aromatic hydrocarbons in sediments of the Amazon River Estuary (Amapá Distribution, sources and potential ecological risk, Northern Brazil). Mar Pollut Bull. https://doi.org/10.1016/j.marpolbul.2018.07.053

    Article  Google Scholar 

  36. Santos SN, Lafon JM, Corrêa JAM, Babinski M, Dias MF, Taddei MHT (2012) Distribuição e assinatura isotópica de Pb em sedimentos de fundo da Foz do Rio Guamá e da Baía do Guajará (Belém - Pará). Química Nova. https://doi.org/10.1590/S0100-40422012000200004

    Article  Google Scholar 

  37. Santos CC, Soares LS, Corrêa JAM (2016) Occurrence and sources of priority polycyclic aromatic hydrocarbons in sediment samples along the Aurá River (Northern Brazil). Geochim Bras. https://doi.org/10.21715/GB2358-2812.2016301026

    Article  Google Scholar 

  38. Sarria-Villa R, Ocampo-Duque W, Páez M, Schuhmacher M (2016) Presence of PAHs in water and sediments of the Colombian Cauca River during heavy rain episodes, and implications for risk assessment. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2015.07.020

    Article  Google Scholar 

  39. Shi Z, Tao S, Pan B, Fan W, He XC, Zuo Q, Wu SP, Li BG, Cao J, Liu WX, Xu FL, Wanga XJ, Shen WR, Wong PK (2005) Contamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbons. Environ Pollut. https://doi.org/10.1016/j.envpol.2004.07.014

    Article  Google Scholar 

  40. Siqueira GW, Aprile F (2013) Avaliação de risco ambiental por contaminação metálica e material orgânico em sedimentos da bacia do Rio Aurá, Região Metropolitana de Belém-PA. Acta Amazônica 43:51–62

    Article  Google Scholar 

  41. Soclo HH, Garrigues PH, Ewald M (2000) Origin of Polycyclic Aromatic Hydrocarbons (PAHs) in Coastal Marine Sediments: Case Studies in Cotonou (Benin) and Aquitaine (France) Areas. Mar Pollut Bull. https://doi.org/10.1016/S0025-326X(99)00200-3

    Article  Google Scholar 

  42. Sodré SSV, Santos CC, Corrêa JAM, Damasceno FC, Cavalcante RM (2017) Preliminary assessment of Miramar Petrochemical Harbor as PAHs source to Guajará bay (Belém-PA-Brazil) surface sediments. Rev Esc Minas. https://doi.org/10.1590/0370-44672016700082

    Article  Google Scholar 

  43. Sun JH, Wang GL, Chai Y, Zhang G, Li J, Feng J (2009) Distribution of polycyclic aromatic hydrocarbons (PAHs) in Henan Reach of the Yellow River, Middle China. Ecotox Environ Saf. https://doi.org/10.1016/j.ecoenv.2008.05.010

    Article  Google Scholar 

  44. Tobiszewski M, Namieśnik J (2012) PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut. https://doi.org/10.1016/j.envpol.2011.10.025

    Article  Google Scholar 

  45. Vasconcellos P, Zacarias D, Piresa MAF, Poolb CS, Carvalho LRF (2003) Measurements of polycyclic aromatic hydrocarbons in airborne particles from the metropolitan area of São Paulo City, Brazil. Atmos Environ. https://doi.org/10.1016/S1352-2310(03)00181-X

    Article  Google Scholar 

  46. Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the fraser river basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem. https://doi.org/10.1016/S0146-6380(02)00002-5

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Council for Scientific and Technological Development (CNPq) (130797/2017-1).

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. C. Sousa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sousa, L.C., Rodrigues, C.C.S., Mendes, R.A. et al. PAH Profiles in Suspended Particulate Matter from an Urbanized River Within the Brazilian Amazon. Bull Environ Contam Toxicol 105, 86–94 (2020). https://doi.org/10.1007/s00128-020-02912-y

Download citation

Keywords

  • Polycyclic aromatic hydrocarbons
  • Organic pollutants
  • Suspended particulate matter
  • Amazon river
  • Gas chromatography