Skip to main content

Toxicity of Explosive Effluent by Alliumcepa and Germination Test

Abstract

In this work the toxicity caused by explosive industries effluent (yellow water) at different levels of toxicity (genetic, cellular and organismal level) was evaluated by the Allium cepa test and the Sorghum sudanense germination. The results showed that the effluent paralyze the mitotic process, keeping the cells in the interphase, decreasing the mitotic index in A. cepa. Chromosomal abnormalities such as c-metaphases, adhesions, breaks, early ascending chromosomes and irregular nucleus were observed for this receptor species. The germination of S. sudanense was reduced, and the development of the radicles were affected, showing reduced tolerance index at the highest concentrations of the effluent. Thus, it is concluded that the effluent from the explosive industry is extremely toxic to the tested organisms, both in cellular and chromosomal level and also for seed germination.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Asita AO, Mokhobo MM (2013) Clastogenic and cytotoxic effects of four pesticides used to control insect pests of stored products on root meristems of Allium cepa. Environ Nat Resour Res 3:133. https://doi.org/10.5539/enrr.v3n2p133

    Article  Google Scholar 

  2. Barreto-Rodrigues M, Da Silva FT, De Paiva TCB (2007) Caracterização física, química e ecotoxicológica de efluente da indústria de fabricação de explosivos. Quim Nova. https://doi.org/10.1590/S0100-40422007000700023

    Article  Google Scholar 

  3. Barreto-Rodrigues M, Silva FT, Paiva TCB (2009) Combined zero-valent iron and fenton processes for the treatment of Brazilian TNT industry wastewater. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2008.09.120

    Article  Google Scholar 

  4. Bo Z, Hongjuan H, Xiaoyan F, Zhenjun L, Jianjie G, Quanhong Y (2018) Degradation of trinitrotoluene by transgenic nitroreductase in Arabidopsis plants. Plant Soil Environ. https://doi.org/10.17221/655/2017-PSE

    Article  Google Scholar 

  5. Bowler C, Montagu MV, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol. https://doi.org/10.1146/annurev.pp.43.060192.000503

    Article  Google Scholar 

  6. Brasil (2009) Regras para análise de sementes. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Mapa/ACS, Brasília, 399 p

    Google Scholar 

  7. Burrows EP, Rosenblatt DH, Mitchell WR, Parmer DL (1989) Organic Explosives and Related Compounds. Environmental and Health Considerations (No. USABRDL-TR-8901). Army biomedical research and development lab fort detrick md, United States

  8. Cavalotti LFR, Peralta-Zamora P, Rodrigues MB, Paiva TC (2009) Degradação de espécies nitroaromáticas e remediação de efluentes da indústria de explosivos, utilizando-se processos redutivos-oxidativos fundamentados no uso de ferro metálico. Química Nova 32:1504–1508

    Article  CAS  Google Scholar 

  9. Chatterjee S, Deb U, Datta S, Walther C, Gupta DK (2017) Common explosives (TNT, RDX, HMX) and their fate in the environment: emphasizing bioremediation. Chemosphere. https://doi.org/10.1016/j.chemosphere.2017.06.008

    Article  Google Scholar 

  10. Cools T, De Veylder L (2009) DNA stress checkpoint control and plant development. Curr Opin Plant Biol. https://doi.org/10.1016/j.pbi.2008.09.012

    Article  Google Scholar 

  11. Cuco SM, Mondim M, Vieira MLC, Aguiar-Perecin ML (2003) Técnicas para a obtenção de preparações citológicas com alta frequência de metáfases mitóticas em plantas: Passiflora (Passifloraceae) e Crotalaria (Leguminosae). Acta Bot Bras. https://doi.org/10.1590/S0102-33062003000300004

    Article  Google Scholar 

  12. Cumming AS, Johnson MS (2019) Energetic materials and munitions: life cycle management, environmental impact and demilitarization. Wiley-VCH, Weinheim

    Book  Google Scholar 

  13. Ferreira AG, Borghetti F (2004) Germinação: do básico ao aplicado. Artmed, Porto Alegre

    Google Scholar 

  14. Fiskesjö G (1985) The Allium test as a standard in environmental monitoring. Hereditas. https://doi.org/10.1111/j.1601-5223.1985.tb00471.x

    Article  Google Scholar 

  15. Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant. https://doi.org/10.1034/j.1399-3054.2003.00223.x

    Article  Google Scholar 

  16. Frische T (2002) Screening for soil toxicity and mutagenicity using luminescent bacteria—a case study of the explosive 2,4,6-trinitrotoluene (TNT). Ecotox Environ Safe. https://doi.org/10.1006/eesa.2001.2124

    Article  Google Scholar 

  17. Furedi EM, Levine BS, Gordon DE, Rac VS, Lish PM (1984) Determination of the chronic mammalian toxicological effects of TNT (Twenty-four-month chronic toxicity/carcinogenicity study of trinitrotoluene (TNT) in the Fischer 344 rat). Final Report - Phase III. Volume 1. ITT Research Institute, Project No. L6116, Study No. 9, Chicago, IL. DAMD17-79-C-9120. AD-A168 637

  18. Grant WF (1978) Chromosome aberrations in plants as a monitoring system. Environ Health Perspect. https://doi.org/10.1289/ehp.782737

    Article  Google Scholar 

  19. Gupta K, Mishra K, Srivastava S, Kumar A (2018) Cytotoxic assessment of chromium and arsenic using chromosomal behavior of root meristem in Allium cepa L. Bull Environ Contam Toxicol. https://doi.org/10.1007/s00128-018-2344-2

    Article  Google Scholar 

  20. Hannink N, Rosser SJ, French CE, Basran A, Murray JA, Nicklin S, Bruce NC (2001) Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nature Biotechnol. https://doi.org/10.1038/nbt1201-1168

    Article  Google Scholar 

  21. Houk VS (1992) The genotoxicity of industrial wastes and effluents: a review. Mutat Res/Rev Genet Toxicol. https://doi.org/10.1016/0165-1110(92)90001-p

    Article  Google Scholar 

  22. Labouriau LG (1983) A germinação de sementes. Organização dos Estados Americanos, Washington

    Google Scholar 

  23. Leme DM, Marin-Morales MA (2009) Allium cepa test in environmental monitoring: a review on its application. Mut Res. https://doi.org/10.1016/j.mrrev.2009.06.002

    Article  Google Scholar 

  24. Levan A (1938) The effect of colchicine on root mitoses in Allium. Hereditas 24:471–486

    Article  Google Scholar 

  25. Li K, Sherman CD, Beaumont J, Sandy S (2010) Evidence on the carcinogenicity of 2,4,6-trinitrotoluene. Office of Environmental Health Hazard Assessment’s (OEHHA). Reproductive and Cancer Hazard Assessment Branc, California

    Google Scholar 

  26. Luo Y, Liang J, Zeng G, Chen M, Mo D, Li G, Zhang D (2018) Seed germination test for toxicity evaluation of compost: Its roles, problems and prospects. Waste Manag. https://doi.org/10.1016/j.wasman.2017.09.023

    Article  Google Scholar 

  27. Martins J, Teles LO, Vasconcelos V (2007) Assays with Daphnia magna and Danio rerio as alert systems in aquatic toxicology. Environ Int. https://doi.org/10.1016/j.envint.2006.12.006

    Article  Google Scholar 

  28. Millar RW, Arber AW, Endsor RM, Hamid J, Colclough ME (2011) Clean manufacture of 2,4,6-trinitrotoluene (TNT) via improved region selectivity in the nitration of toluene. J Energy Mater. https://doi.org/10.1080/07370652.2010.484411

    Article  Google Scholar 

  29. Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant. https://doi.org/10.1111/j.1399-3054.2008.01090.x

    Article  Google Scholar 

  30. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. https://doi.org/10.1016/s1360-1385(02)02312-9

    Article  Google Scholar 

  31. Ogunyemi AK, Samuel TA, Amund OO, Ilori MO (2017) Toxicity evaluation of waste effluent from cassava-processing factory in Lagos state, Nigeria using the Allium cepa assay. Ife J Sci. https://doi.org/10.4314/ijs.v20i2.11

    Article  Google Scholar 

  32. Priac A, Badot PM, Crini G (2017) Treated wastewater phytotoxicity assessment using Lactuca sativa: focus on germination and root elongation test parameters. C R Biol. https://doi.org/10.1016/j.crvi.2017.01.002

    Article  Google Scholar 

  33. Ribeiro EN, Da Silva FT, De Paiva TCB (2012) Ecotoxicological evaluation of wastewater from 2,4,6-TNT production. J Environ Sci Health A. https://doi.org/10.1080/10934529.2012.640550

    Article  Google Scholar 

  34. Robidoux PY, Bardai G, Paquet L, Ampleman G, Thiboutot S, Hawari J, Sunahara GI (2003) Phytotoxicity of 2, 4, 6-trinitrotoluene (TNT) and octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX) in spiked artificial and natural forest soils. Arch Environ Con Tox. https://doi.org/10.1007/s00244-002-2018-1

    Article  Google Scholar 

  35. Rodrigues MB (2005) Effluents’ treatment from the manufacture of TNT from explosives manufacturing using advanced oxidation and reductive process. University of São Paulo, Lorena

    Google Scholar 

  36. Rylott EL, Bruce NC (2009) Plants disarm soil: engineering plants for the phytoremediation of explosives. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2008.11.001

    Article  Google Scholar 

  37. Rylott EL, Bruce NC (2019) Right on target: using plants and microbes to remediate explosives. Int J Phytoremediation. https://doi.org/10.1080/15226514.2019.1606783

    Article  Google Scholar 

  38. Sewelam N, Kazan K, Schenk PM (2016) Global plant stress signaling: reactive oxygen species at the crossroad. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00187

    Article  Google Scholar 

  39. Silva GH, Monteiro RTR (2017) Toxicity assessment of silica nanoparticles on Allium cepa. Ecotoxicol Environ Contam. https://doi.org/10.5132/eec.2017.01.04

    Article  Google Scholar 

  40. Simões MS, Madail RH, Barbosa S, de LimaNogueira M (2013) Padronização de bioensaios para detecção de compostos alelopáticos e toxicantes ambientais utilizando alface. Biotemas. https://doi.org/10.5007/2175-7925.2013v26n3p29

    Article  Google Scholar 

  41. Talmage SS, Opresko DM, Maxwell CJ, Welsh CJ, Cretella FM, Reno PH, Daniel FB (1999) Nitroaromatic munition compounds: environmental effects and screening values. Rev Environ Contam Toxicol 161:1–156

    CAS  Google Scholar 

  42. Urbanski T (1985) Chemistry and technology of explosives. Pergamon Press, Oxford, pp 1–80

    Google Scholar 

  43. Wilkins DA (1978) The measurement of tolerance to edaphic factors by means of root growth. New Phytol 80:623–633

    Article  CAS  Google Scholar 

  44. Yuasa T, Ichimura K, Mizoguchi T, Shinozaki K (2001) Oxidative stress activates ATMPK6, an Arabidopsis homologue of MAP kinase. Plant Cell Physiol. https://doi.org/10.1093/pcp/pce123

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carine Muniz Rodrigues.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, C.M., Suchoronczek, A., De Lima, V.A. et al. Toxicity of Explosive Effluent by Alliumcepa and Germination Test. Bull Environ Contam Toxicol 105, 127–133 (2020). https://doi.org/10.1007/s00128-020-02904-y

Download citation

Keywords

  • Chromosomal abnormality
  • Nitroaromatics
  • Plant bioassays
  • Seeds
  • Sorghum sudanense