The Role of Phytohormones in Enhancing Metal Remediation Capacity of Algae

Abstract

Heavy metal (HM) contamination of the environment is a major issue worldwide, creating an ever-increasing demand for remediation techniques. Remediation with algae offers an ecologically safe, cost-effective, and efficient option for HM removal. Similar to plants, growth and development of algae are controlled by the hormonal system, where phytohormones are involved in HM tolerance and thus can regulate remediation ability; however, the underlying mechanisms of phytohormone function remain elusive. This review aims to draw a comprehensive model of phytohormone contributions to algal performance under HM stress. We focus on the mechanisms of HM biosorption, uptake and intracellular storage, and on how phytohormones interact with algal defence systems under HM exposure. We provide examples of successful utilization of algae in remediation, and of post-processing of algal materials. Finally, we discuss the advantages and risks of using algae for remediation. An in-depth understanding of these processes can inform effective HM remediation techniques.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Ahmad S, Pandey A, Pathak VV, Tyagi VV, Kothari R (2020) Phycoremediation: algae as eco-friendly tools for the removal of heavy metals from wastewaters. In: Bharagava RN, Saxena G (eds) Bioremediation of industrial waste for environmental safety. Springer, Singapore, pp 53–76

    Google Scholar 

  2. Andrade AD, Rollemberg MCE, Nóbrega JA (2005) Proton and metal binding capacity of the green freshwater alga Chaetophora elegans. Process Biochem 40:1931–1936. https://doi.org/10.1016/j.procbio.2004.07.007

    Article  CAS  Google Scholar 

  3. Bajguz A (2000) Blockade of heavy metals accumulation in Chlorella vulgaris cells by 24-epibrassinolide. Plant Physiol Biochem 38:797–801. https://doi.org/10.1016/S0981-9428(00)01185-2

    Article  CAS  Google Scholar 

  4. Bajguz A (2002) Brassinosteroids and lead as stimulators of phytochelatins synthesis in Chlorella vulgaris. J Plant Physiol 159:321–324. https://doi.org/10.1078/0176-1617-00654

    Article  CAS  Google Scholar 

  5. Bajguz A (2010) An enhancing effect of exogenous brassinolide on the growth and antioxidant activity in Chlorella vulgaris cultures under heavy metals stress. Environ Exp Bot 68:175–179. https://doi.org/10.1016/j.envexpbot.2009.11.003

    Article  CAS  Google Scholar 

  6. Bajguz A (2011) Suppression of Chlorella vulgaris growth by cadmium, lead, and copper stress and its restoration by endogenous brassinolide. Arch Environ Contam Toxicol 60:406–416. https://doi.org/10.1007/s00244-010-9551-0

    Article  CAS  Google Scholar 

  7. Bajguz A (2019) Brassinosteroids in microalgae: application for growth improvement and protection against abiotic stresses. In: Hayat S, Yusuf M, Bhardwaj R, Bajguz A (eds) Brassinosteroids: Plant growth and development. Springer, Singapore, pp 45–58

    Google Scholar 

  8. Cheng SY, Show P-L, Lau BF, Chang J-S, Ling TC (2019) New prospects for modified algae in heavy metal adsorption. Trends Biotechnol 37:1255–1268. https://doi.org/10.1016/j.tibtech.2019.04.007

    Article  CAS  Google Scholar 

  9. Czerpak R, Piotrowska A, Szulecka K (2006) Jasmonic acid affects changes in the growth and some components content in alga Chlorella vulgaris. Acta Physiol Plant 28:195–203. https://doi.org/10.1007/BF02706531

    Article  CAS  Google Scholar 

  10. Dorantes-Aranda JJ, Seger A, Mardones JI, Nichols PD, Hallegraeff GM (2015) Progress in understanding algal bloom-mediated fish kills: the role of superoxide radicals, phycotoxins and fatty acids. PLoS ONE. https://doi.org/10.1371/journal.pone.0133549

    Article  Google Scholar 

  11. El-Sheekh MM, Mahmoud YA-G (2017) Technological approach of bioremediation using microbial tools. In: Bhakta JN (ed) Handbook of research on inventive bioremediation techniques. IGI Global, Hershey, pp 134–154

    Google Scholar 

  12. Falkowska M, Pietryczuk A, Piotrowska A, Bajguz A, Grygoruk A, Czerpak R (2011) The effect of gibberellic acid (GA3) on growth, metal biosorption and metabolism of the green algae Chlorella vulgaris (Chlorophyceae) Beijerinck exposed to cadmium and lead stress. Pol J Environ Stud 20:53–59

    Google Scholar 

  13. Fässler E, Evangelou MW, Robinson BH, Schulin R (2010) Effects of indole-3-acetic acid (IAA) on sunflower growth and heavy metal uptake in combination with ethylene diamine disuccinic acid (EDDS). Chemosphere 80:901–907. https://doi.org/10.1016/j.chemosphere.2010.04.077

    Article  CAS  Google Scholar 

  14. Fortin C, Campbell PG (2001) Thiosulfate enhances silver uptake by a green alga: role of anion transporters in metal uptake. Environ Sci Technol 35:2214–2218. https://doi.org/10.1021/es0017965

    Article  CAS  Google Scholar 

  15. Han X, Zeng H, Bartocci P, Fantozzi F, Yan Y (2018) Phytohormones and effects on growth and metabolites of microalgae: a review. Fermentation 4(2):25. https://doi.org/10.3390/fermentation4020025

    Article  CAS  Google Scholar 

  16. Hsu YT, Kao CH (2005) Abscisic acid accumulation and cadmium tolerance in rice seedlings. Physiol Plant 124:71–80. https://doi.org/10.1111/j.1399-3054.2005.00490.x

    Article  CAS  Google Scholar 

  17. Ibuot A, Dean AP, McIntosh OA, Pittman JK (2017) Metal bioremediation by CrMTP4 over-expressing Chlamydomonas reinhardtii in comparison to natural wastewater-tolerant microalgae strains. Algal Res 24:89–96. https://doi.org/10.1016/j.algal.2017.03.002

    Article  Google Scholar 

  18. Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact 17(1):36. https://doi.org/10.1186/s12934-018-0879-x

    Article  Google Scholar 

  19. Khasin M, Cahoon RE, Alvarez S, Beckeris R, Eyun S-i, Jia Q, Riethoven J-J, Nickerson KW, Riekhof WR (2017) Synthesis, secretion, and perception of abscisic acid regulates stress responses in Chlorella sorokiniana, bioRxiv. https://doi.org/10.1101/180547

  20. Kiran Marella T, Saxena A, Tiwari A (2020) Diatom mediated heavy metal remediation: a review. Bioresour Technol 305:123068. https://doi.org/10.1016/j.biortech.2020.123068

    Article  CAS  Google Scholar 

  21. Kováčik J, Klejdus B, Babula P, Hedbavny J (2017) Ascorbic acid affects short-term response of Scenedesmus quadricauda to cadmium excess. Algal Res 24:354–359. https://doi.org/10.1016/j.algal.2017.04.026

    Article  Google Scholar 

  22. Liu D, Li T, Yang X, Islam E, Jin X, Mahmood Q (2007) Enhancement of lead uptake by hyperaccumulator plant species Sedum alfredii hance using EDTA and IAA. Bull Environ Contam Toxicol 78:280–283. https://doi.org/10.1007/s00128-007-9121-y

    Article  CAS  Google Scholar 

  23. Lu Y, Xu J (2015) Phytohormones in microalgae: a new opportunity for microalgal biotechnology? Trends Plant Sci 20:273–282. https://doi.org/10.1016/j.tplants.2015.01.006

    Article  CAS  Google Scholar 

  24. Maillard P, Thepenier C, Gudin C (1993) Determination of an ethylene biosynthesis pathway in the unicellular green alga, Haematococcus pluvialis. Relationship between growth and ethylene production. J Appl Phycol 5:93–98. https://doi.org/10.1007/BF02182426

    Article  CAS  Google Scholar 

  25. Maksymiec W (2007) Signaling responses in plants to heavy metal stress. Acta Physiol Plant 29:177–187. https://doi.org/10.1007/s11738-007-0036-3

    Article  CAS  Google Scholar 

  26. Mansour SA (2014) Heavy metal contamination as a global problem and the need for prevention/reduction measurements. In: Bhat R, Gómez-López VM (eds) Practical food safety: contemporary issues and future directions. Wiley Blackwell, Chichester, pp 257–280

    Google Scholar 

  27. Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185. https://doi.org/10.1146/annurev.arplant.56.032604.144046

    Article  CAS  Google Scholar 

  28. Noble A, Kisiala A, Galer A, Clysdale D, Emery RN (2014) Euglena gracilis (Euglenophyceae) produces abscisic acid and cytokinins and responds to their exogenous application singly and in combination with other growth regulators. Eur J Phycol 49:244–254. https://doi.org/10.1080/09670262.2014.911353

    Article  CAS  Google Scholar 

  29. Ozfidan C, Turkan I, Sekmen AH, Seckin B (2012) Abscisic acid-regulated responses of aba2-1 under osmotic stress: the abscisic acid-inducible antioxidant defence system and reactive oxygen species production. Plant Biol (Stuttg) 14:337–346. https://doi.org/10.1111/j.1438-8677.2011.00496.x

    Article  CAS  Google Scholar 

  30. Park D, Yun Y-S, Park JM (2010) The past, present, and future trends of biosorption. Biotechnol Bioprocess E 15:86–102. https://doi.org/10.1007/s12257-009-0199-4

    Article  CAS  Google Scholar 

  31. Perales-Vela HV, Peña-Castro JM, Cañizares-Villanueva RO (2006) Heavy metal detoxification in eukaryotic microalgae. Chemosphere 64:1–10. https://doi.org/10.1016/j.chemosphere.2005.11.024

    Article  CAS  Google Scholar 

  32. Piotrowska A, Bajguz A, Godlewska-Żyłkiewicz B, Czerpak R, Kamińska M (2009) Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lemnaceae). Environ Exp Bot 66:507–513. https://doi.org/10.1016/j.envexpbot.2009.03.019

    Article  CAS  Google Scholar 

  33. Piotrowska-Niczyporuk A, Bajguz A, Zambrzycka E, Godlewska-Żyłkiewicz B (2012) Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiol Biochem 52:52–65. https://doi.org/10.1016/j.plaphy.2011.11.009

    Article  CAS  Google Scholar 

  34. Piotrowska-Niczyporuk A, Bajguz A, Zambrzycka-Szelewa E (2017) Response and the detoxification strategies of green alga Acutodesmus obliquus (Chlorophyceae) under lead stress. Environ Exp Bot 144:25–36. https://doi.org/10.1016/j.envexpbot.2017.08.013

    Article  CAS  Google Scholar 

  35. Piotrowska-Niczyporuk A, Bajguz A, Zambrzycka-Szelewa E, Bralska M (2018a) Exogenously applied auxins and cytokinins ameliorate lead toxicity by inducing antioxidant defence system in green alga Acutodesmus obliquus. Plant Physiol Biochem 132:535–546. https://doi.org/10.1016/j.plaphy.2018.09.038

    Article  CAS  Google Scholar 

  36. Piotrowska-Niczyporuk A, Bajguz A, Kotowska U, Bralska M, Talarek-Karwel M (2018b) Growth, metabolite profile, oxidative status, and phytohormone levels in the green alga Acutodesmus obliquus exposed to exogenous auxins and cytokinins. J Plant Growth Regul 37:1159–1174. https://doi.org/10.1007/s00344-018-9816-9

    Article  CAS  Google Scholar 

  37. Plettner I, Steinke M, Malin G (2005) Ethene (ethylene) production in the marine macroalga Ulva (Enteromorpha) intestinalis L. (Chlorophyta, Ulvophyceae): effect of light-stress and co-production with dimethyl sulphide. Plant Cell Environ 28:1136–1145. https://doi.org/10.1111/j.1365-3040.2005.01351.x

    Article  CAS  Google Scholar 

  38. Pokora W, Tukaj Z (2010) The combined effect of anthracene and cadmium on photosynthetic activity of three Desmodesmus (Chlorophyta) species. Ecotoxicol Environ Saf 73:1207–1213. https://doi.org/10.1016/j.ecoenv.2010.06.013

    Article  CAS  Google Scholar 

  39. Romanenko EA, Kosakovskaya IV, Romanenko PA (2016) Phytohormones of microalgae: biological role and involvement in the regulation of physiological processes. Pt II. Cytokinins and gibberellins. Algologia 26:203–229. https://doi.org/10.15407/alg26.02.203

    Article  Google Scholar 

  40. Salama E-S, Roh H-S, Dev S, Khan MA, Abou-Shanab RAI, Chang SW, Jeon B-H (2019) Algae as a green technology for heavy metals removal from various wastewater. World J Microbiol Biotechnol 35:75. https://doi.org/10.1007/s11274-019-2648-3

    Article  CAS  Google Scholar 

  41. Sanderson MJ, Thorne JL, Wikström N, Bremer K (2004) Molecular evidence on plant divergence times. Am J Bot 91:1656–1665. https://doi.org/10.3732/ajb.91.10.1656

    Article  CAS  Google Scholar 

  42. Selvi A, Rajasekar A, Theerthagiri J, Ananthaselvam A, Sathishkumar K, Madhavan J, Rahman PKSM (2019) Integrated remediation processes toward heavy metal removal/recovery from various environments-a review. Front Environ Sci 7:171. https://doi.org/10.3389/fenvs.2019.00066

    Article  Google Scholar 

  43. Sen Gupta G, Yadav G, Tiwari S (2020) Bioremediation of heavy metals: a new approach to sustainable agriculture. In: Upadhyay AK, Singh R, Singh DP (eds) Restoration of wetland ecosystem: a trajectory towards a sustainable environment. Springer, Singapore, pp 195–226

    Google Scholar 

  44. Sheath RG, Wehr JD (2015) Introduction to the freshwater algae. In: Wehr JD (ed) Freshwater algae of North America. Elsevier, New York, pp 1–11

    Google Scholar 

  45. Simmons DBD, Hayward AR, Hutchinson TC, Emery RJN (2009) Identification and quantification of glutathione and phytochelatins from Chlorella vulgaris by RP-HPLC ESI-MS/MS and oxygen-free extraction. Anal Bioanal Chem 395:809–817. https://doi.org/10.1007/s00216-009-3016-1

    Article  CAS  Google Scholar 

  46. Stirk WA, Ördög V, Novák O, Rolčík J, Strnad M, Bálint P, van Staden J (2013a) Auxin and cytokinin relationships in 24 microalgal strains. J Phycol 49:459–467. https://doi.org/10.1111/jpy.12061

    Article  CAS  Google Scholar 

  47. Stirk WA, Bálint P, Tarkowská D, Novák O, Strnad M, Ördög V, van Staden J (2013b) Hormone profiles in microalgae: gibberellins and brassinosteroids. Plant Physiol Biochem 70:348–353. https://doi.org/10.1016/j.plaphy.2013.05.037

    Article  CAS  Google Scholar 

  48. Tarakhovskaya ER, Maslov YI, Shishova MF (2007) Phytohormones in algae. Russ J Plant Physiol 54:163–170. https://doi.org/10.1134/S1021443707020021

    Article  CAS  Google Scholar 

  49. Tran L-SP, Pal S (2014) Phytohormones: a window to metabolism, signaling and biotechnological applications. Springer, New York

    Book  Google Scholar 

  50. Wang J, Chen J, Pan K (2013) Effect of exogenous abscisic acid on the level of antioxidants in Atractylodes macrocephala Koidz under lead stress. Environ Sci Pollut Res Int 20:1441–1449. https://doi.org/10.1007/s11356-012-1048-0

    Article  CAS  Google Scholar 

  51. Xu Z-Y, Yoo Y-J, Hwang I (2014) ABA conjugates and their physiological roles in plant cells. In: Zhang D-P (ed) Abscisic acid: metabolism, transport and signaling. Springer, Dordrecht, pp 77–87

    Google Scholar 

  52. Wilkinson S, Davies WJ (2010) Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ 33:510–525. https://doi.org/10.1111/j.1365-3040.2009.02052.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was conceptualized with the help of Aaron Woodcock. Financial support came from the Ontario Trillium Scholarship for PhD Studies to VS, and from NSERC Discovery Grant No. RGPIN-05436 to RJNE.

Author information

Affiliations

Authors

Contributions

TQN and VS contributed to conceptualization and literature research. The first manuscript draft was written by TQN and VS. AK and RJNE commented on previous drafts and critically revised the work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Verena Sesin.

Ethics declarations

Conflict of interest

VS was invited as Assistant Editor for the International Institute for Environmental Studies (IIES) Special Issue. All other authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.Q., Sesin, V., Kisiala, A. et al. The Role of Phytohormones in Enhancing Metal Remediation Capacity of Algae. Bull Environ Contam Toxicol 105, 671–678 (2020). https://doi.org/10.1007/s00128-020-02880-3

Download citation

Keywords

  • Algae
  • Environmental pollution
  • Heavy metals
  • Phytohormones
  • Remediation