Skip to main content

Biochemical Responses of the Bivalve Mollusk Unio tumidus Inhabiting a Small Power Plant Reservoir on the Dniester River Basin, Ukraine

Abstract

Hydropower plants (HPPs) can affect the hydrological regime. However, biochemical responses of aquatic animals for the evaluation of this disturbing are not applied yet. The specimens of Unio tumidus were sampled in a reservoir (R) of a small HPP as well as downstream from the dam (DS). Biochemical indexes in the digestive gland and alkali labile phosphates (ALP) in the gonads were examined. The R-mollusks showed low cholinesterase, catalase and caspase-3 activities, and metallothionein concentration, but elevated levels of zinc and copper, oxidized glutathione and protein carbonyls. Concentrations of lactate, pyruvate and ALP, activity of superoxide dismutase and glutathione S-transferase, and lipid peroxidation level were similar in both groups. Integrated biomarker response (IBR/n) index (n = 13) was 2.17 and 0.29 in the R- and DS-groups correspondingly. We suggest that using integrative biological response based on the biochemical markers of bivalve mollusks can be a valid early warning step in assessing ‘environmental flow’ impact.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

Experimental data, calculation of IBR, and the applied methods are available via the Mendeley Data by the following link: https://doi.org/10.17632/v5ygx7bpmc.1.

References

  1. Aebi H (1974) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, London, pp 671–684

    Google Scholar 

  2. Bainy ACD, de Medeiros MHG, Di Mascio P, de Almeida EA (2006) In vivo effects of metals on the acetylcholinesterase activity of the Perna perna mussel’s digestive gland. Biotemas 19:35–39

    Google Scholar 

  3. Beliaeff B, Burgeot T (2002) Integrated biomarker response: a useful tool for ecological risk assessment. Environ Toxicol Chem 21:1316–1322. https://doi.org/10.1002/etc.5620210629

    Article  CAS  Google Scholar 

  4. Bhagat J, Ingole BS, Singh N (2016) Glutathione S-transferase, catalase, superoxide dismutase, glutathione peroxidase, and lipid peroxidation as biomarkers of oxidative stress in snails: a review. Invertebr Surviv J 13:336–349

    Google Scholar 

  5. Bilotta GS, Burnside NG, Turley MD, Gray JC, Orr HG (2017) The effects of run-of-river hydroelectric power schemes on invertebrate community composition in temperate streams and rivers. PLoS ONE 12(2):e0171634. https://doi.org/10.1371/journal.pone.0171634

    Article  CAS  Google Scholar 

  6. Bonomini M, Dottori S, Amoroso A, Arduini A, Sirolli V (2004) Increased platelet phosphatidylserine exposure and caspase activation in chronic uremia. J Thromb Haemost 2(2):1275–1281. https://doi.org/10.1111/j.1538-7836.2004.00837.x

    Article  CAS  Google Scholar 

  7. Bopp SK, Barouki R, Brack W, Dalla Costa S, Dorne JLC, Drakvik PE, Faust M, Karjalainen TK, Kephalopoulos S, van Klaveren J, Kolossa-Gehring M (2018) Current EU research activities on combined exposure to multiple chemicals. Environ Int 120:544–562. https://doi.org/10.1016/j.envint.2018.07.037

    Article  CAS  Google Scholar 

  8. Broeg K, Lehtonen KK (2006) Indices for the assessment of environmental pollution of the Baltic Sea coasts: integrated assessment of a multi-biomarker approach. Mar Pollut Bull 53:508–522. https://doi.org/10.1016/j.marpolbul.2006.02.004

    Article  CAS  Google Scholar 

  9. Chen H, Ma L, Guo W, Yang Y, Guo T, Yang Y, Guo T, Feng C (2013) Linking water quality and quantity in environmental flow assessment in deteriorated ecosystems: a food web view. PLoS ONE 8(7):e70537. https://doi.org/10.1371/journal.pone.0070537

    Article  CAS  Google Scholar 

  10. CIS guidance document N 31. Ecological flows in the implementation of the Water Framework Directive. https://publications.europa.eu/en/publication-detail/-/publication/b2369e0f-d154-11e5-a4b5-01aa75ed71a1/language-en. Accessed 2 October 2016

  11. Dailianis S (2010) Environmental impact of anthropogenic activities: the use of mussels as a reliable tool for monitoring marine pollution. In: McGevin LE (ed) Mussels: anatomy, habitat and environmental impact. Nova Science Publishers, Іnc, Hauppauge, pp 43–72

    Google Scholar 

  12. Desouky MM (2012) Metallothionein is up-regulated in molluscan responses to cadmium, but not aluminum, exposure. J Basic Appl Zool 65(2):139–143. https://doi.org/10.1016/j.jobaz.2012.07.008

    Article  CAS  Google Scholar 

  13. Ellman GL, Courtney KD, Andres VJ, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–90. https://doi.org/10.1016/0006-2952(61)90145-9

    Article  CAS  Google Scholar 

  14. Eron SJ, MacPherson DJ, Dagbay KB, Hardy JA (2018) Multiple mechanisms of zinc-mediated inhibition for the apoptotic caspases-3,-6,-7, and-8. ACS Chem Biol 13(5):1279–1290. https://doi.org/10.1021/acschembio.8b00064

    Article  CAS  Google Scholar 

  15. Falfushynska H, Gnatyshyna L, Yurchak I, Sokolova I, Stoliar O (2015) The effects of zinc nanooxide on cellular stress responses of the freshwater mussels Unio tumidus are modulated by elevated temperature and organic pollutants. Aquat Toxicol 162:82–93. https://doi.org/10.1016/j.aquatox.2015.03.006

    Article  CAS  Google Scholar 

  16. Falfushynska HI, Gnatyshyna LL, Farkas A, Vehovszky A, Gyori J, Stoliar OB (2010) Vulnerability of biomarkers in the indigenous mollusk Anodonta cygnea to spontaneous pollution in a transition country. Chemosphere 81(10):1342–1351. https://doi.org/10.1016/j.chemosphere.2010.08.016

    Article  CAS  Google Scholar 

  17. Ferreira CP, Lima D, Paiva R, Vilke JM, Mattos JJ, Almeida EA, Grott SC, Alves TC, Corrêa JN, Jorge MB, Uczay M, Vogel CIG, Gomes CHAM, Bainy ACD, Lüchmann KH (2019) Metal bioaccumulation, oxidative stress and antioxidant responses in oysters Crassostrea gasar transplanted to an estuary in southern Brazil. Sci Total Environ 685:332–344. https://doi.org/10.1016/j.scitotenv.2019.05.384

    Article  CAS  Google Scholar 

  18. Fried R (1975) Enzymatic and non-enzymatic assay of superoxide dismutase. Biochimie 57:657–660. https://doi.org/10.1016/s0300-9084(75)80147-7

    Article  CAS  Google Scholar 

  19. Gagné F, André C (2011) New approaches to indirect vitellogenin-like protein evaluations in aquatic oviparous and ovoviviparous organisms. Fresen Environ Bull 20:12–17

    Google Scholar 

  20. Gagné F, Blaise C, Pellerin J, Pelletier E, Douville M, Gauthier-Clerc S, Viglino L (2003) Sex alteration in soft-shell clams (Mya arenaria) in an intertidal zone of the Saint Lawrence River (Quebec, Canada). Comp Biochem Physiol C 134:189–198. https://doi.org/10.1016/S1532-0456(02)00248-X

    Article  Google Scholar 

  21. Gawehn K (1988) d-(–)-Lactate. In: Bergmeyer HU (ed) Methods of enzymatic analysis, 3rd edn. VCH Publishers (UK) Ltd., Cambridge, pp 588–592

    Google Scholar 

  22. Gnatyshyna L, Khoma V, Mishchuk O, Martinyuk V, Spriņģe G, Stoliar O (2020) Multi-marker study of the responses of the Unio tumidus from the areas of small and micro hydropower plants at the Dniester River Basin, Ukraine. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-07698-4

    Article  Google Scholar 

  23. Gnatyshyna L, Khoma V, Horyn O, Ozoliņš D, Skuja A, Kokorite I, Rodinov V, Martyniuk V, Spriņģe G, Stoliar O (2020a) Multi-marker study of Dreissena polymorpha populations from hydropower plant reservoir and natural lake in Latvia. Turk J Fish Aquat Sci 20:409–420. https://doi.org/10.4194/1303-2712-v20_6_01

    Article  Google Scholar 

  24. Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212

    Article  CAS  Google Scholar 

  25. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  26. Hoarau P, Garello G, Gnassia-Barelli M, Roméo M, Girard JP (2004) Effect of three xenobiotic compounds on glutathione S-transferase in the clam Ruditapes decussatus. Aquat Toxicol 68(1):87–94. https://doi.org/10.1016/j.aquatox.2004.03.001

    Article  CAS  Google Scholar 

  27. Hook SE, Gallagher EP, Batley GE (2014) The role of biomarkers in the assessment of aquatic ecosystem health. Integr Environ Assess Manag 10(3):327–341. https://doi.org/10.1002/ieam.1530

    Article  CAS  Google Scholar 

  28. Lamprecht W, Heinz F (1988) Pyruvate. In: Bergmeyer HU (ed) Methods of enzymatic analysis. VCH Publishers (UK) Ltd., Cambridge, pp 570–577

    Google Scholar 

  29. Lebedynets M, Sprynskyy M, Kowalkowski T, Buszewski B (2004) State of environment in the Dniester river basin (West Ukraine). Environ Sci Pollut Res Int 11(4):279–280. https://doi.org/10.1007/BF02979638

    Article  Google Scholar 

  30. Lowry OH, Rosebrough HJ, Farr AL, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  31. Ohkawa H, Onishi N, Yagi K (1979) Assay for lipid peroxidation in animal tissue by thiobarbituric acid reaction. Anal Biochem 95:351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  Google Scholar 

  32. Overton IC, Smith DM, Dalton J, Barchiesi S, Acreman MC, Stromberg JC, Kirby JM (2014) Implementing environmental flows in integrated water resources management and the ecosystem approach. Hydrol Sci J 59:860–877. https://doi.org/10.1080/02626667.2014.897408

    Article  Google Scholar 

  33. Plum LM, Rink L, Haase H (2010) The essential toxin: impact of zinc on human health. Int J Environ Res Public Health 7:1342–1365. https://doi.org/10.3390/ijerph7041342

    Article  CAS  Google Scholar 

  34. Purina I, Barda I, Rimsa E, Poikane R, Jansons M (2013) Concentrations of metallothionein in the bivalve mollusks Anodonta spp. and Unio spp. from Latvian lakes with different anthropogenic pressure. Proceedings of the 16th International conference on heavy metals in the environment, E3S web of conferences 1:34005. https://doi.org/10.1051/e3sconf/20130134005

  35. Quadroni S, Crosa G, Gentili G, Espa P (2017) Response of stream benthic macroinvertebrates to current water management in Alpine catchments massively developed for hydropower. Sci Total Environ 609:484–496. https://doi.org/10.1016/j.scitotenv.2017.07.099

    Article  CAS  Google Scholar 

  36. Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Meth Enzymol 233:357–363. https://doi.org/10.1016/s0076-6879(94)33041-7

    Article  CAS  Google Scholar 

  37. Rhee SG, Yang KS, Kang SW, Woo HA, Chang TS (2005) Controlled elimination of intracellular H2O2: regulation of peroxiredoxin, catalase, and glutathione peroxidase via post-translational modification. Antioxid Redox Signal 7(5–6):619–626. https://doi.org/10.1089/ars.2005.7.619

    Article  CAS  Google Scholar 

  38. Romero A, Estévez-Calvar N, Dios S, Figueras A, Novoa B (2011) New insights into the apoptotic process in mollusks: characterization of caspase genes in Mytilus galloprovincialis. PLoS ONE 6(2):e17003. https://doi.org/10.1371/journal.pone.0017003

    Article  CAS  Google Scholar 

  39. Rzymski P, Horyn O, Budzyńska A, Jurczak T, Kokociński M, Niedzielski P, Klimaszyk P, Falfushynska H (2018) A report of Cylindrospermopsis raciborskii and other cyanobacteria in the water reservoirs of power plants in Ukraine. Environ Sci Pollut Res Int 25(15):15245–15252. https://doi.org/10.1007/s11356-018-2010-6

    Article  CAS  Google Scholar 

  40. Stoliar OB, Mykhayliv RL, Mishchuk YV (2004) Influence of the environmental conditions on binding of heavy metals and oxidative decomposition of biomolecules in tissues of Anodonta cygnea (Bivalvia). Hydrobiol J 40(2):66–75. https://doi.org/10.1615/HydrobJ.v40.i2.70

    Article  Google Scholar 

  41. Stolyar OB, Loumbourdis NS, Falfushinska HI, Romanchuk LD (2008) Comparison of metal bioavailability in frogs from urban and rural sites of Western Ukraine. Arch Environ Contam Toxicol 54:107–113. https://doi.org/10.1007/s00244-007-9012-6

    Article  CAS  Google Scholar 

  42. Tim-Tim AL, Morgado F, Moreira S, Rangel R, Nogueira AJ, Soares AM, Guilhermino L (2009) Cholinesterase and glutathione S-transferase activities of three mollusc species from the NW Portuguese coast in relation to the `Prestige’ oil spill. Chemosphere 77:1465–1475. https://doi.org/10.1016/j.chemosphere.2009.10.014

    Article  CAS  Google Scholar 

  43. Vehovszky Á, Farkas A, Ács A, Stoliar O, Székács A, Mörtl M, Győri J (2015) Neonicotinoid insecticides inhibit cholinergic neurotransmission in a molluscan (Lymnaea stagnalis) nervous system. Aquat Toxicol 167:172–179. https://doi.org/10.1016/j.aquatox.2015.08.009

    Article  CAS  Google Scholar 

  44. Vergauwen B, Pauwels F, Van Beeumen JJ (2003) Glutathione and catalase provide overlapping defenses for protection against respiration-generated hydrogen peroxide in Haemophilus influenzae. J Bacteriol 185(18):5555–5562. https://doi.org/10.1128/JB.185.18.5555-5562.2003

    Article  CAS  Google Scholar 

  45. Viarengo A, Ponzano E, Dondero F, Fabbri R (1997) A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic Molluscs. Mar Environ Res 44:69–84. https://doi.org/10.1016/S0141-1136(96)00103-1

    Article  CAS  Google Scholar 

  46. Vystavna Y, Frkova Z, Celle-Jeanton H, Diadin D, Huneau F, Steinmann M, Crini N, Loup C (2018) Priority substances and emerging pollutants in urban rivers in Ukraine: occurrence, fluxes and loading to transboundary European Union watersheds. Sci Total Environ 637–638:1358–1362. https://doi.org/10.1016/j.scitotenv.2018.05.095

    Article  CAS  Google Scholar 

  47. Yoloğlu E (2019) Investigation of metallothionein level, reduced GSH level, MDA level, and metal content in two different tissues of freshwater mussels from Atatürk Dam Lake coast, Turkey. Chem Ecol 35:644–659. https://doi.org/10.1080/02757540.2019.1626839

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been granted by the Ministry of Education and Science of Ukraine (Projects M/70-2017, M/35-2018 and 132B for O. Stoliar). The authors are grateful to the Director of the National Nature Park Dniester Canyon Mr. Mykhaylo Shkilniuk for his assistance in the sampling in the Kasperivtsi area, to PhD St Oksana Horyn for the technical assistance in the trial and to English native biologist Dr. Inna Birchenko for the scientific editing, linguistic and phraseological improvement of this manuscript.

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by VK, LG, VM, YR, AM, OS. The first draft of the manuscript was written by OS and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Oksana Stoliar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khoma, V., Gnatyshyna, L., Martinyuk, V. et al. Biochemical Responses of the Bivalve Mollusk Unio tumidus Inhabiting a Small Power Plant Reservoir on the Dniester River Basin, Ukraine. Bull Environ Contam Toxicol 105, 67–75 (2020). https://doi.org/10.1007/s00128-020-02873-2

Download citation

Keywords

  • Bivalve mollusk
  • Water flow
  • Cholinesterase
  • Glutathione
  • Metallothionein