Skip to main content

Leaching Behaviour and Enhanced Phytoextraction of Additives for Cadmium-Contaminated Soil by Pennisetum sp.

Abstract

The leaching behavior of five additives, including citric acid (CA), wood vinegar (WV), 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP), polyaspartic acid (PASP) and FeCl3, was investigated to evaluate the possibility of enhanced phytoextraction of Pennisetum sp. from cadmium-contaminated soil. FeCl3 and CA have the highest leaching potential due to the ability that could convert large amounts of mobile fractions of Cd. The pot experiment showed that HEDP, WV, and PASP treatments could not only significantly increase the biomass of Pennisetum sp., but also maintain high uptake capacity of Cd by activating the stable fractions. HEDP has the highest Cd extraction efficiency and metal extraction ratio (MER) value. The phytoremediation efficiency could be improved mainly by increasing the biomass of the tolerant shoots, and Pennisetum sp. seems to have the maximum potential of phytoextraction to Cd with HEDP which could achieve a higher phytoextraction effect than Cd-hyperaccumulator.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Afshan S, Ali S, Bharwana SA, Rizwan M, Farid M (2015) Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L. Environ Sci Pollut Res 22:11679–11689

    CAS  Article  Google Scholar 

  2. Alkorta I, Allica J, Beccerril JM, Amezaga I, Albizu I, Garbisu C (2004) Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead and arsenic. Rev Environ Health 3:71–90

    CAS  Google Scholar 

  3. Allica JH, Becerrili JM, Garbisu C (2008) Assessment of the phytoextraction potential of high biomass crop plants. Environ Pollut 152:32–40

    Article  Google Scholar 

  4. Baker AJM, Mcgrath SP, Sidoli C, Reeves RD (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conserv Recycl 11:41–49

    Article  Google Scholar 

  5. Begum ZA, Rahman IM, Sawai H, Mizutani S, Maki T, Hasegawa H (2013) Effect of extraction variables on the biodegradable chelant-assisted removal of toxic metals from artificially contaminated European reference soils. Water Air Soil Pollut 224:1–21

    CAS  Article  Google Scholar 

  6. Bluskov S, Arocena JM, Omotoso OO, Young JP (2005) Uptake, distribution, and speciation of chromium in Brassica juncea. Int J Phytoremediat 7:153–165

    CAS  Article  Google Scholar 

  7. Cui HB, Fan YC, Yang J, Xu L, Zhou J, Zhu ZQ (2016) In situ phytoextraction of copper and cadmium and its biological impacts in acidic soil. Chemosphere 161:233–241

    CAS  Article  Google Scholar 

  8. Evangelou MWH, Ebel M, Schaeffer A (2007) Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68:989–1003

    CAS  Article  Google Scholar 

  9. Garcia G, Faz A, Cunha M (2004) Performance of Piptatherum miliaceum (Smilo grass) in edaphic Pb and Zn phytoremediation over a short growth period. Int Biodeterior Biodegrad 54:245–250

    CAS  Article  Google Scholar 

  10. He S, Yang X, He Z, Baligar VC (2017) Morphological and physiological responses of plants to cadmium toxicity: a review. Pedosphere 27:421–438

    Article  Google Scholar 

  11. Huang FYC, Brady PV, Lindgren ER, Guerra P (1998) Biodegradation of uranium-citrate complexes: implications for extraction of uranium from soils. Environ Sci Technol 32:379–382

    CAS  Article  Google Scholar 

  12. Kennedy VH, Sanchez AL, Oughton DH, Rowland AP (1997) Use of single and sequential chemical extractants to assess radionuclide and heavy metal availability from soils for root uptake. Analyst 122:89–100

    Article  Google Scholar 

  13. Khan I, Ahmad A, Iqbal M (2009) Modulation of antioxidant defence system for arsenic detoxification in Indian mustard. Ecotoxicol Environ Saf 72:626–634

    CAS  Article  Google Scholar 

  14. Makino T, Sugahara K, Sakurai Y, Takano H, Kamiya T, Sasaki K, Itou T, Sekiya N (2006) Remediation of cadmium contamination in paddy soils by washing with chemicals: selection of washing chemicals. Environ Pollut 144:2–10

    CAS  Article  Google Scholar 

  15. Makino T, Takano H, Kamiya T, Itou T, Sekiya N, Inahara M, Sakurai Y (2008) Restoration of cadmium-contaminated paddy soils by washing with ferric chloride: Cd extraction mechanism and bench-scale verification. Chemosphere 70:1035–1043

    CAS  Article  Google Scholar 

  16. Mertens J, Luyssaert S, Verheyen K (2005) Use and abuse of trace metal concentrations in plant tissue for biomonitoring and phytoextraction. Environ Pollut 138:1–4

    CAS  Article  Google Scholar 

  17. Nemati K, Abu Bakar NK, Sobhanzadeh E, Abas MR (2009) A modification of the BCR sequential extraction procedure to investigate the potential mobility of copper and zinc in shrimp aquaculture sludge. Microchem J 92:165–169

    CAS  Article  Google Scholar 

  18. Nowack B (2003) Environmental chemistry of phosphonates. Water Res 37:2533–2546

    CAS  Article  Google Scholar 

  19. Qin F, Shan XQ, Wei B (2004) Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils. Chemosphere 57:253–263

    CAS  Article  Google Scholar 

  20. Quartacci MF, Cosi E, Meneguzzo S, Sgherri C, Navari-Izzo F (2003) Uptake and translocation of copper in brassicaceae. J Plant Nutr 26:1065–1083

    CAS  Article  Google Scholar 

  21. Roque J, Molera J, Vendrell-Saz M, Salvado N (2004) Crystal size distributions of induced calcium carbonate crystals in polyaspartic acid and Mytilus edulis acidic organic proteins aqueous solutions. J Cryst Growth 262:543–553

    CAS  Article  Google Scholar 

  22. Solis-Dominguez FA, Gonzalez-Chavez MC, Carrillo-Gonzalez R, Rodriguez-Vazquez R (2007) Accumulation and localization of cadmium in Echinochloa polystachya grown within a hydroponic system. J Hazard Mater 141:630–636

    CAS  Article  Google Scholar 

  23. Steber J, Wierich P (1986) Properties of hydroxyethane diphosphonate affecting its environmental fate-degradability, sludge adsorption, mobility in soils, and bioconcentration. Chemosphere 15:929–945

    CAS  Article  Google Scholar 

  24. Sun YB, Zhou QX, Diao CY (2008) Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. Bioresour Technol 99:1103–1110

    CAS  Article  Google Scholar 

  25. Sun YB, Zhou QX, Wang L, Liu WT (2009) The influence of different growth stages and dosage of EDTA on Cd uptake and accumulation in Cd-hyperaccumulator (Solanum nigrum L.). Bull Environ Contam Toxicol 82:348–353

    CAS  Article  Google Scholar 

  26. Trotta A, Falaschi P, Cornara L, Minganti V, Fusconi A, Drava G, Berta G (2006) Arbuscular mycorrhizae increase the arsenic translocation factor in the as hyperaccumulating fern Pteris vittata L. Chemosphere 65:74–81

    CAS  Article  Google Scholar 

  27. Tu C, Ma LQ, Bondada B (2002) Arsenic accumulation in the hyperaccumulator Chinese brake and its utilization potential for phytoremediation. J Environ Qual 31:1671–1675

    CAS  Article  Google Scholar 

  28. Wang X, Bai Y, Luo Q, Liu Z (2013) Study on ATMP and HEDP water treatment agent synergistic effect. Appl Chem Ind 1:4–7

    Google Scholar 

  29. Wang GY, Zhang SR, Xu XX, Zhong QM, Zhang CE, Jia YX, Li T, Deng OP, Li Y (2016) Heavy metal removal by GLDA washing: optimization, redistribution, recycling, and changes in soil fertility. Sci Total Environ 569:557–568

    Article  Google Scholar 

  30. Wu Q, Cui YR, Li QL, Sun JH (2015) Effective removal of heavy metals from industrial sludge with the aid of a biodegradable chelating ligand GLDA. J Hazard Mater 283:748–754

    CAS  Article  Google Scholar 

  31. Zalewska M (2012) Response of perennial ryegrass (Lolium perenne L.) to soil contamination with zinc. J Elementol 17:329–343

    Google Scholar 

  32. Zayed A, Gowthaman S, Terry N (1998) Phytoaccumulation of trace elements by wetland plants: I. Duckweed. J Environ Qual 27:715–721

    CAS  Article  Google Scholar 

  33. Zhang WH, Cai Y, Tu C, Ma LQ (2002) Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Sci Total Environ 300:167–177

    CAS  Article  Google Scholar 

  34. Zhang X, Zhang S, Xu X, Li T, Gong G, Jia Y (2010) Tolerance and accumulation characteristics of cadmium in Amaranthus hybridus L. J Hazard Mater 180:303–308

    CAS  Article  Google Scholar 

  35. Zhang Y, Ge SJ, Jiang MY, Jiang Z, Wang ZG, Ma BB (2014) Combined bioremediation of atrazine-contaminated soil by Pennisetum and Arthrobacter sp. strain DNS10. Environ Sci Pollut Res 21:6234–6238

    CAS  Article  Google Scholar 

  36. Zhang JR, Li HZ, Zhou YZ, Dou L, Cai LM, Mo LP, You J (2018) Bioavailability and soil-to-crop transfer of heavy metals in farmland soils: a case study in the Pearl River Delta, South China. Environ Pollut 235:710–719

    CAS  Article  Google Scholar 

  37. Zu YQ, Li Y, Chen JJ, Chen HY, Qin L, Schvartz C (2005) Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environ Int 31:755–762

    CAS  Article  Google Scholar 

  38. Zvobgo G, Lwalaba JLW, Sehar S, Mapodzeke JM, Shamsi IH, Zhang GP (2018) The tolerance index and translocation factor were used to identify the barley genotypes with high arsenic stress tolerance. Commun Soil Sci Plant Anal 49:50–62

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Plan (2018YFD0800304) and Natural Science Foundation of Jiangsu Province (No. BK20171075).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yaping Zhang or Shefeng Hao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, F., Zhang, Y., Hao, S. et al. Leaching Behaviour and Enhanced Phytoextraction of Additives for Cadmium-Contaminated Soil by Pennisetum sp.. Bull Environ Contam Toxicol 104, 658–667 (2020). https://doi.org/10.1007/s00128-020-02851-8

Download citation

Keywords

  • Additives
  • Leaching behavior
  • Phytoextraction
  • Cadmium
  • Pennisetum sp.