Skip to main content

Phytotoxicity Assessment of Copper Oxide Nanoparticles on the Germination, Early Seedling Growth, and Physiological Responses in Oryza sativa L.

Abstract

The increasing utilization of copper oxide nanoparticles (CuO NPs) and their release into the environment has made it imperative to elucidate their impact on the ecological system including plants. However, their potential toxic impact and mechanisms on plant growth are still unclear. The aim of this study was to investigate the effects of CuO NPs and released Cu ions on seed germination and early seedling growth, as well as physiological and biochemical parameters of Oryza sativa. The results showed that CuO NPs at high concentration significantly inhibited seed germination and early seedling growth. The toxicity of CuO NPs originated from the particulate NPs rather than the released Cu2+. The phytotoxicity of CuO NPs to rice seed germination and seedling growth probably induced by high Cu accumulation along with the lignification and oxidative damage. The work presented here will increase our knowledge of phytotoxicity of CuO NPs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Baskar V, Nayeem S, Kuppuraj SP, Muthu T, Ramalingam S (2018) Assessment of the effects of metal oxide nanoparticles on the growth physiology and metabolic responses in in vitro grown eggplant (Solanum melongena). 3 Biotech 8:362

    Article  Google Scholar 

  2. Dai Y, Zhao J, Liu X, Yu X, Jiang Z, Bu Y, Xu Z, Wang Z, Zhu X, Xing B (2019) Transformation and species identification of CuO nanoparticles in plant cells (Nicotiana tabacum). Environ Sci Nano 6(9):2724–2735

    CAS  Article  Google Scholar 

  3. Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity metal speciation and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1125–1129

    Article  Google Scholar 

  4. He J, Ren Y, Chen X, Chen H (2014) Protective roles of nitric oxide on seed germination and seedling growth of rice (Oryza sativa L.) under cadmium stress. Ecotoxicol Environ Saf 108:114–119

    CAS  Article  Google Scholar 

  5. Hou J, Wang X, Hayat T, Wang X (2017) Ecotoxicological effects and mechanism of CuO nanoparticles to individual organisms. Environ Pollut 221:209–217

    CAS  Article  Google Scholar 

  6. Ke M, Zhu Y, Zhang M, Gumai H, Zhang Z, Xu J, Qian H (2017) Physiological and molecular response of Arabidopsis thaliana to CuO nanoparticle (nCuO) exposure. Bull Environ Contam Tox 99(6):713–718

    CAS  Article  Google Scholar 

  7. Landa P, Dytrych P, Prerostova S, Petrova S, Vankova R, Vanek T (2017) Transcriptomic response of Arabidopsis thaliana exposed to CuO nanoparticles bulk material and ionic copper. Environ Sci Technol 51(18):10814–10824

    CAS  Article  Google Scholar 

  8. Lee S, Chung H, Kim S, Lee I (2013) The genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat Fagopyrum esculentum. Water Air Soil Pollut 224(9):1668–1678

    Article  Google Scholar 

  9. Liu R, Zhang H, Lal R (2016) Effects of stabilized nanoparticles of copper zinc manganese and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients? Water Air Soil Pollut 227:1–14

    Article  Google Scholar 

  10. Nair PMG, Chung IM (2015) Changes in the growth redox status and expression of oxidative stress related genes in chickpea (Cicer arietinum L.) in response to copper oxide nanoparticle exposure. J Plant Growth Regul 34(2):350–361

    CAS  Article  Google Scholar 

  11. Peng C, Duan D, Xu C, Chen Y, Sun L, Zhang H, Yuan X, Zheng L, Yang Y, Yang J, Zhen X (2015) Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants. Environ Pollut 197:99–107

    CAS  Article  Google Scholar 

  12. Peng C, Shen C, Zheng S, Yang W, Hu H, Liu J, Shi J (2017) Transformation of CuO nanoparticles in the aquatic environment: influence of pH, electrolytes and natural organic matter. Nanomaterials 7(10):326

    Article  Google Scholar 

  13. Rahmani F, Peymani A, Daneshvand E, Biparva P (2016) Impact of zinc oxide and copper oxide nano-particles on physiological and molecular processes in Brassica napus L. Indian J Plant Physiol 21(2):122–128

    Article  Google Scholar 

  14. Rajput VD, Minkina T, Suskova S, Mandzhieva S, Tsitsuashvili V, Chapligin V, Fedorenko A (2018) Effects of copper nanoparticles (CuO NPs) on crop plants: a mini review. BioNanoScience 8(1):36–42

    Article  Google Scholar 

  15. Rajput V, Minkina T, Sushkova S, Behal A, Maksimov A, Blicharska E, Ghazaryan K, Movsesyan H, Barsova N (2020) ZnO and CuO nanoparticles: a threat to soil organisms, plants, and human health. Environ Geochem Health 42:147–158

    CAS  Article  Google Scholar 

  16. Ren Y, Wang W, He J, Zhang L, Wei Y, Yang M (2020) Nitric oxide alleviates salt stress in seed germination and early seedling growth of pakchoi (Brassica chinensis L.) by enhancing physiological and biochemical parameters. Ecotoxicol Environ Saf 187:109785

    CAS  Article  Google Scholar 

  17. Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93(6):906–915

    CAS  Article  Google Scholar 

  18. Shaw AK, Ghosh S, Kalaji HM, Bosa K, Brestic M, Zivcak M, Hossain Z (2014) Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.). Environ Exp Bot 102:37–47

    CAS  Article  Google Scholar 

  19. Shi J, Peng C, Yang Y, Yang J, Zhang H, Yuan X, Chen Y, Hu T (2014) Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens. Nanotoxicology 8(2):179–188

    CAS  Article  Google Scholar 

  20. Singh A, Singh NB, Hussain I, Singh H, Yadav V (2017) Synthesis and characterization of copper oxide nanoparticles and its impact on germination of Vigna radiata (L.) R. Wilczek. Trop Plant Biol 4(2):246–253

    Google Scholar 

  21. Song G, Hou W, Gao Y, Wang Y, Lin L, Zhang Z, Niu Q, Ma R, Mu L, Wang H (2016) Effects of CuO nanoparticles on Lemna minor. Bot Stud 57(1):3

    Article  Google Scholar 

  22. Souza L, Bernardes L, Barbetta M, Márcia V (2019) Iron oxide nanoparticle phytotoxicity to the aquatic plant Lemna minor: effect on reactive oxygen species (ROS) production and chlorophyll a/chlorophyll b ratio. Environ Sci Pollut Res 26(23):24121–24131

    CAS  Article  Google Scholar 

  23. Tamez C, Hernandez-Molina M, Hernandez-Viezcas JA, Gardea-Torresdey JL (2019) Uptake transport and effects of nano-copper exposure in zucchini (Cucurbita pepo). Sci Total Environ 665:100–106

    CAS  Article  Google Scholar 

  24. Tang Y, He R, Zhao J, Nie G, Xu L, Xing B (2016) Oxidative stress-induced toxicity of CuO nanoparticles and related toxicogenomic responses in Arabidopsis thaliana. Environ Pollut 212:605–614

    CAS  Article  Google Scholar 

  25. Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012) Xylem-and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46(8):4434–4441

    CAS  Article  Google Scholar 

  26. Wang Z, Xu L, Zhao J, Wang X, White JC, Xing B (2016) CuO nanoparticle interaction with Arabidopsis thaliana: toxicity parent-progeny transfer and gene expression. Environ Sci Technol 50(11):6008–6016

    CAS  Article  Google Scholar 

  27. Wu SG, Huang L, Head J, Chen DR, Kong IC, Tang YJ (2012) Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. J Pet Environ Biotechnol 3(4):126–130

    CAS  Google Scholar 

  28. Zhang D, Hua T, Xiao F, Chen C, Gersberg RM, Liu Y, Ng WJ, Tan SK (2014) Uptake and accumulation of CuO nanoparticles and CdS/ZnS quantum dot nanoparticles by Schoenoplectus tabernaemontani in hydroponic mesocosms. Ecol Eng 70:114–123

    Article  Google Scholar 

  29. Zhao J, Wang Z, Liu X, Xie X, Zhang K, Xing B (2011) Distribution of CuO nanoparticles in juvenile carp (Cyprinus carpio) and their potential toxicity. J Hazard Mater 197(15):304–310

    CAS  Article  Google Scholar 

  30. Zhao J, Ren W, Dai Y, Liu L, Wang Z, Yu X, Zhang J, Xing B (2017) Uptake distribution and transformation of CuO NPs in a floating plant Eichhornia crassipes and related stomatal responses. Environ Sci Technol 51(13):7686–7695

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (31460100, 31660477, and 31360413), Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX19-0635 and SJCX19-0650).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yanfang Ren or Junyu He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Liu, J., Ren, Y. et al. Phytotoxicity Assessment of Copper Oxide Nanoparticles on the Germination, Early Seedling Growth, and Physiological Responses in Oryza sativa L.. Bull Environ Contam Toxicol 104, 770–777 (2020). https://doi.org/10.1007/s00128-020-02850-9

Download citation

Keywords

  • CuO NPs
  • Oryza sativa
  • Toxicity
  • Lignification
  • Oxidative damage