Skip to main content

A Scientometric Analysis of Recent Literature on Arsenic Bioaccumulation and Biotransformation in Marine Ecosystems

Abstract

Arsenic (As) bioaccumulation and biotransformation in marine ecosystems involve a number of fields and disciplines such as Environmental Sciences & Ecology, Marine & Freshwater Biology, and Toxicology. Arsenic research in these areas has been developing rapidly in recent years. It is crucial to keep up with the emerging trends and critical development of the collective knowledge. Therefore, a progressively synthesized network was achieved from 6396 original publications that cited 500 articles obtained from an initial topic search between 2010 and 2019. CiteSpace was used to analyze the progress and emerging trends. Results showed that these publications were divided into 13 different but closely related clusters. A major ongoing trend was identified in Cluster #3 and #5, concerning As and other heavy metals as heterogeneous complexants and assessing their overall impacts on human health. Other new emerging trends include evaluating the As profile in estuarial ecosystems and assessing its bioaccumulation and biotransformation along the food chain. Overall, the scientometric analytics of targeting literature performed in this review has offered a valuable and timely approach to evaluate the new emerging trends, providing researchers with up-to-date and critical information in research areas relevant to the searching topic.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ahmed M, Shaheen N, Islam M, Habibullah-al-Mamun M, Islam S, Mohiduzzaman M, Bhattacharjee L (2015) Dietary intake of trace elements from highly consumed cultured fish (Labeo rohita, Pangasius pangasius and Oreochromis mossambicus) and human health risk implications in Bangladesh. Chemosphere 128:284–292. https://doi.org/10.1016/j.chemosphere.2015.02.016

    CAS  Article  Google Scholar 

  2. Amayo KO, Raab A, Krupp EM, Marschall T, Horsfall M, Feldmann J (2014) Arsenolipids show different profiles in muscle tissues of four commercial fish species. J Trace Elem Med Biol 28:131–137. https://doi.org/10.1016/j.jtemb.2013.11.004

    CAS  Article  Google Scholar 

  3. Amin M, Xiong C, Francesconi KA, Itahashi Y, Yoneda M, Yoshinaga J (2019) Variation in arsenolipid concentrations in seafood consumed in Japan. Chemosphere 239:124781. https://doi.org/10.1016/j.chemosphere.2019.124781

    CAS  Article  Google Scholar 

  4. Andrade M, Marchi L, Soares A, Rocha R, Figueira E, Freitas R (2018) Are the effects induced by increased temperature enhanced in Mytilus galloprovincialis submitted to air exposure? Sci Total Environ 647:431–440. https://doi.org/10.1016/j.scitotenv.2018.07.293

    CAS  Article  Google Scholar 

  5. Bond AL (2010) Relationships between stable isotopes and metal contaminants in feathers are spurious and biologically uninformative. Environ Pollut 158:1182–1184. https://doi.org/10.1016/j.envpol.2010.01.004

    CAS  Article  Google Scholar 

  6. Borch T, Kretzschmar R, Kappler A, Cappellen P, Ginder-Vogel M, Voegelin A, Campbell K (2010) Biogeochemical redox processes and their impact on contaminant dynamics. Environ Sci Technol 44:15–23. https://doi.org/10.1021/es9026248

    CAS  Article  Google Scholar 

  7. Bosch AC, O'Neill B, Sigge GO, Kerwath SE, Hoffman LC (2016) Heavy metals in marine fish meat and consumer health: a review. J Sci Food Agric 96:32–48. https://doi.org/10.1002/jsfa.7360

    CAS  Article  Google Scholar 

  8. Cao R et al (2018) Seawater acidification aggravated cadmium toxicity in the oyster Crassostrea gigas: metal bioaccumulation, subcellular distribution and multiple physiological responses. Sci Total Environ 642:809–823. https://doi.org/10.1016/j.scitotenv.2018.06.126

    CAS  Article  Google Scholar 

  9. Casado-Martinez MC, Smith BD, Luoma SN, Rainbow PS (2010) Bioaccumulation of arsenic from water and sediment by a deposit-feeding polychaete (Arenicola marina): a biodynamic modelling approach. Aquat Toxicol 98:34–43. https://doi.org/10.1016/j.aquatox.2010.01.015

    CAS  Article  Google Scholar 

  10. Chen C, Hu Z, Liu S, Tseng H (2012) Emerging trends in regenerative medicine: a scientometric analysis in CiteSpace. Expert Opin Biol Ther 12:593–608. https://doi.org/10.1517/14712598.2012.674507

    CAS  Article  Google Scholar 

  11. Chen C, Ibekwe-SanJuan F, Hou J (2010) The structure and dynamics of cocitation clusters: a multiple-perspective cocitation analysis. J Am Soc Inform Sci Technol 61:1386–1409. https://doi.org/10.1002/asi.21309

    Article  Google Scholar 

  12. Copat C, Arena G, Fiore M, Ledda C, Fallico R, Sciacca S, Ferrante M (2013) Heavy metals concentrations in fish and shellfish from eastern Mediterranean Sea: consumption advisories. Food Chem Toxicol 53:33–37. https://doi.org/10.1016/j.fct.2012.11.038

    CAS  Article  Google Scholar 

  13. de Mora S, Fowler SW, Wyse E, Azemard S (2004) Distribution of heavy metals in marine bivalves, fish and coastal sediments in the Gulf and Gulf of Oman. Mar Pollut Bull 49:410–424. https://doi.org/10.1016/j.marpolbul.2004.02.029

    CAS  Article  Google Scholar 

  14. Dural M, Göksu ZM, Özak A (2007) Investigation of heavy metal levels in economically important fish species captured from the Tuzla lagoon. Food Chem 102:415–421. https://doi.org/10.1016/j.foodchem.2006.03.001

    CAS  Article  Google Scholar 

  15. El-Moselhy KM, Othman AI, El-Azem AH, El-Metwally MEA (2014) Bioaccumulation of heavy metals in some tissues of fish in the Red Sea Egypt. Egypt J Basic Appl Sci 1:97–105. https://doi.org/10.1016/j.ejbas.2014.06.001

    Article  Google Scholar 

  16. Filella M (2011) Antimony interactions with heterogeneous complexants in waters, sediments and soils: a review of data obtained in bulk samples. Earth Sci Rev 107:325–341. https://doi.org/10.1016/j.earscirev.2011.04.002

    CAS  Article  Google Scholar 

  17. Filella M, Williams PA (2012) Antimony interactions with heterogeneous complexants in waters, sediments and soils: a review of binding data for homologous compounds Chemie der Erde. Geochemistry 72:49–65. https://doi.org/10.1016/j.chemer.2012.01.006

    CAS  Article  Google Scholar 

  18. Food and Agriculture Organization (2019) FAO Yearbook of Fishery Statistics. https://www.fao.org/fishery/publications/yearbooks/en

  19. Francesconi KA (2010) Arsenic species in seafood: origin and human health implications. Pure Appl Chem 82:373–381. https://doi.org/10.1351/pac-con-09-07-01

    CAS  Article  Google Scholar 

  20. Francesconi KA, Kuehnelt D (2004) Determination of arsenic species: a critical review of methods and applications, 2000–2003. Analyst 129:373–395. https://doi.org/10.1039/b401321m

    CAS  Article  Google Scholar 

  21. Frost D (1981) Selenium and vitamin E as antidotes to heavy metal toxicities. In: Spallholz JE, Martin JL, Ganther HE (eds) Selenium in biology and medicine. AVI Publishing Co., Westport, CT, p 490–498

    Google Scholar 

  22. Gautier A, Clausman P (1904) Origines alimentaires de l'arsenic normal chez l'homme Comptes rendus de l'Académie des. Sciences 139:101

    CAS  Google Scholar 

  23. Gu Y-G, Ning J-J, Ke C-L, Huang H-H (2018) Bioaccessibility and human health implications of heavy metals in different trophic level marine organisms: a case study of the South China Sea. Ecotoxicol Environ Saf 163:551–557. https://doi.org/10.1016/j.ecoenv.2018.07.114

    CAS  Article  Google Scholar 

  24. He M, Wang X, Wu F, Fu Z (2012) Antimony pollution in China. Sci Total Environ 421:41–50. https://doi.org/10.1016/j.scitotenv.2011.06.009

    CAS  Article  Google Scholar 

  25. Howard AG, Apte SC, Comber SDW, Morris RJ (1988) Biogeochemical control of the summer distribution and speciation of arsenic in the Tamar estuary Estuarine, Coastal and Shelf. Science 27:427–443. https://doi.org/10.1016/0272-7714(88)90098-4

    CAS  Article  Google Scholar 

  26. Lunde G (1977) Occurrence and transformation of arsenic in the marine environment. Environ Health Perspect 19:47–52. https://doi.org/10.1289/ehp.771947

    CAS  Article  Google Scholar 

  27. Maehre HK, Malde MK, Eilertsen KE, Elvevoll EO (2014) Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed. J Sci Food Agric 94:3281–3290. https://doi.org/10.1002/jsfa.6681

    CAS  Article  Google Scholar 

  28. Melton ED, Swanner ED, Behrens S, Schmidt C, Kappler A (2014) The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nat Rev Microbiol. https://doi.org/10.1038/nrmicro3347

    Article  Google Scholar 

  29. Meyer S, Matissek M, Müller SM, Taleshi MS, Ebert F, Francesconi KA, Schwerdtle T (2014) In vitro toxicological characterisation of three arsenic-containing hydrocarbons. Metallomics 6:1023–1033. https://doi.org/10.1039/c4mt00061g

    CAS  Article  Google Scholar 

  30. Müller SM et al (2018) Arsenic-containing hydrocarbons: effects on gene expression, epigenetics, and biotransformation in HepG2 cells. Arch Toxicol 92:1751–1765. https://doi.org/10.1007/s00204-018-2194-z

    CAS  Article  Google Scholar 

  31. Pan K, Wang W-X (2012) Trace metal contamination in estuarine and coastal environments in China. Sci Total Environ 421:3–16. https://doi.org/10.1016/j.scitotenv.2011.03.013

    CAS  Article  Google Scholar 

  32. Penrose WR, Conacher HB, Black R, Méranger JC, Miles W, Cunningham HM, Squires WR (1977) Implications of inorganic/organic interconversion on fluxes of arsenic in marine food webs. Environ Health Perspect 19:53–59. https://doi.org/10.1289/ehp.771953

    CAS  Article  Google Scholar 

  33. Phillips D (1990) Arsenic in aquatic organisms: a review, emphasizing chemical speciation. Aquat Toxicol 16:151–186. https://doi.org/10.1016/0166-445x(90)90036-o

    CAS  Article  Google Scholar 

  34. Price RE, Pichler T (2005) Distribution, speciation and bioavailability of arsenic in a shallow-water submarine hydrothermal system, Tutum Bay, Ambitle Island, PNG. Chem Geol 224:122–135. https://doi.org/10.1016/j.chemgeo.2005.07.017

    CAS  Article  Google Scholar 

  35. Rahman AM, Hasegawa H, Lim R (2012) Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain. Environ Res 116:118–135. https://doi.org/10.1016/j.envres.2012.03.014

    CAS  Article  Google Scholar 

  36. Regoli F, Giuliani M (2014) Oxidative pathways of chemical toxicity and oxidative stress biomarkers in marine organisms. Mar Environ Res 93:106–117. https://doi.org/10.1016/j.marenvres.2013.07.006

    CAS  Article  Google Scholar 

  37. Ren JL, Zhang J, Li DD, Cheng Y, Liu SM (2010) Behavior of dissolved inorganic arsenic in the Yellow Sea and East China Sea. Deep Sea Res Part II 57:1035–1046. https://doi.org/10.1016/j.dsr2.2010.02.005

    CAS  Article  Google Scholar 

  38. Roleda MY, Marfaing H, Desnica N, Jónsdóttir R, Skjermo J, Rebours C, Nitschke U (2019) Variations in polyphenol and heavy metal contents of wild-harvested and cultivated seaweed bulk biomass: health risk assessment and implication for food applications. Food Control 95:121–134. https://doi.org/10.1016/j.foodcont.2018.07.031

    CAS  Article  Google Scholar 

  39. Saha N, Mollah MZI, Alam MF, Rahman SM (2016) Seasonal investigation of heavy metals in marine fishes captured from the Bay of Bengal and the implications for human health risk assessment. Food Control 70:110–118. https://doi.org/10.1016/j.foodcont.2016.05.040

    CAS  Article  Google Scholar 

  40. Sanders JG (1980) Arsenic cycling in marine systems. Mar Environ Res 3:257–266. https://doi.org/10.1016/0141-1136(80)90038-0

    CAS  Article  Google Scholar 

  41. Satterlee HS (1960) The arsenic-poisoning epidemic of 1900—its relation to lung cancer in 1960—an exercise in retrospective epidemiology. New Engl J Med 263:676–684. https://doi.org/10.1056/nejm196010062631405

    CAS  Article  Google Scholar 

  42. Schroeder HA, Balassa JJ (1966) Abnormal trace metals in man: Arsenic. J Chronic Dis 19:85–106. https://doi.org/10.1016/0021-9681(66)90152-4

    CAS  Article  Google Scholar 

  43. Sele V, Sloth JJ, Lundebye A-K, Larsen EH, Berntssen M, Amlund H (2012) Arsenolipids in marine oils and fats: a review of occurrence, chemistry and future research needs. Food Chem 133:618–630. https://doi.org/10.1016/j.foodchem.2012.02.004

    CAS  Article  Google Scholar 

  44. Sharma VK, Sohn M (2009) Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ Int 35:743–759. https://doi.org/10.1016/j.envint.2009.01.005

    CAS  Article  Google Scholar 

  45. Smith AH, Lingas EO, Rahman M (2000) Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull World Health Organ 78:1093–1103

    CAS  Google Scholar 

  46. Soltani N, Moore F, Keshavarzi B, Sorooshian A, Javid R (2019) Potentially toxic elements (PTEs) and polycyclic aromatic hydrocarbons (PAHs) in fish and prawn in the Persian Gulf. Iran Ecotoxicol Environ Saf 173:251–265. https://doi.org/10.1016/j.ecoenv.2019.02.005

    CAS  Article  Google Scholar 

  47. Stiboller M, Raber G, Lenters V, Gjengedal E, Eggesbo M, Francesconi KA (2017) Arsenolipids detected in the milk of nursing mothers. Environ Sci Technol Lett. https://doi.org/10.1021/acs.estlett.7b00181

    Article  Google Scholar 

  48. Taleshi MS, Edmonds JS, Goessler W, Ruiz-Chancho M, Raber G, Jensen KB, Francesconi KA (2010) Arsenic-containing lipids are natural constituents of sashimi tuna. Environ Sci Technol 44:1478–1483. https://doi.org/10.1021/es9030358

    CAS  Article  Google Scholar 

  49. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Mol Clin Environ Toxicol 101:133–164. https://doi.org/10.1007/978-3-7643-8340-4_6

    Article  Google Scholar 

  50. Varol M (2011) Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J Hazard Mater 195:355–364. https://doi.org/10.1016/j.jhazmat.2011.08.051

    CAS  Article  Google Scholar 

  51. Wang H, Wang J, Liu R, Yu W, Shen Z (2015) Spatial variation, environmental risk and biological hazard assessment of heavy metals in surface sediments of the Yangtze River estuary. Mar Pollut Bull 93:250–258. https://doi.org/10.1016/j.marpolbul.2015.01.026

    CAS  Article  Google Scholar 

  52. Wang N-X, Li Y, Deng X-H, Miao A-J, Ji R, Yang L-Y (2013) Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes. Water Res 47:2497–2506. https://doi.org/10.1016/j.watres.2013.02.034

    CAS  Article  Google Scholar 

  53. WHO (2011) Guidelines for drinking-water quality, 4th edn. World Health Organization, Switzerland

    Google Scholar 

  54. Wilson SC, Lockwood PV, Ashley PM, Tighe M (2010) The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review. Environ Pollut 158:1169–1181. https://doi.org/10.1016/j.envpol.2009.10.045

    CAS  Article  Google Scholar 

  55. Xia W et al (2019) Spatial and interspecies differences in concentrations of eight trace elements in wild freshwater fishes at different trophic levels from middle and eastern China. Sci Total Environ 672:883–892. https://doi.org/10.1016/j.scitotenv.2019.03.134

    CAS  Article  Google Scholar 

  56. Yi Y, Yang Z, Zhang S (2011) Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environ Pollut 159:2575–2585. https://doi.org/10.1016/j.envpol.2011.06.011

    CAS  Article  Google Scholar 

  57. Zhu Y-G, Yoshinaga M, Zhao F-J, Rosen BP (2014) Earth abides arsenic biotransformations Annual review of earth and planetary. Sciences 42:443–467. https://doi.org/10.1146/annurev-earth-060313-054942

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their constructive suggestions. This work was supported by National Natural Science Foundation of China (21876180), Guangzhou Science and Technology Plan Projects (201710010173), and the 100 Talents Project of Guangzhou University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhong, H. & Zhang, W. A Scientometric Analysis of Recent Literature on Arsenic Bioaccumulation and Biotransformation in Marine Ecosystems. Bull Environ Contam Toxicol 104, 551–558 (2020). https://doi.org/10.1007/s00128-020-02849-2

Download citation

Keywords

  • Arsenic
  • Bioaccumulation
  • Biotransformation
  • Marine ecosystems
  • Emerging trend
  • Health risk
  • Food chain
  • Heavy metal