Skip to main content

Effects of CeO2 Nanoparticles on Microcystis aeruginosa Growth and Microcystin Production

Abstract

The interaction between metal oxide nanoparticles and toxin-producing cyanobacteria is relatively unknown. The present work exposed Microcystis sp.7806 to different concentrations of cerium oxide nanoparticles (CeO2 NPs) (1 mg/L, 10 mg/L and 50 mg/L), and evaluated the growth, photosynthetic activity, reactive oxygen species level, and the extra-(intra-) cellular microcystin-LR (MC-LR) contents. The particle size, zeta potential and cerium ions released into the medium were analyzed. Results showed 10 mg/L NP treatment promoted algae growth but slightly inhibited the photosynthetic yield of algae, and the 50 mg/L treatment reduced algae biomass. The algal cells remarkably responded to oxidative stress at higher concentrations (10 mg/L and 50 mg/L). CeO2 NPs largely increased the intracellular MC-LR content at 50 mg/L, and significantly reduced the extracellular MC-LR content at any concentration. This demonstrates CeO2 NPs may pose an ecological risk potential during harmful algal blooms by stimulating toxin production.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Angel BM, Vallotton P, Apte SC (2015) On the mechanism of nanoparticulate CeO2 toxicity to freshwater algae. Aquat Toxicol 168:90–97

    CAS  Article  Google Scholar 

  2. Bi X, Dai W, Zhou Q, Wang Y, Dong S, Zhang S, Qiao X, Zhu G (2016) Effect of anthracene (ANT) on growth, microcystin (MC) production and expression of MC synthetase (mcy) genes in Microcystis aeruginosa. Water Air Soil Pollut 227:259–266

    Article  Google Scholar 

  3. Cao Q, Steinman AD, Wan X, Xie L (2018) Bioaccumulation of microcystin congeners in soil-plant system and human health risk assessment: a field study from Lake Taihu region of China. Environ Pollut 240:44–50

    CAS  Article  Google Scholar 

  4. Chen L, Mao F, Kirumba GC, Jiang C, Manefield M, He Y (2015) Changes in metabolites, antioxidant system, and gene expression in Microcystis aeruginosa under sodium chloride stress. Ecotox Environ Safe 122:126–135

    CAS  Article  Google Scholar 

  5. Dalai S, Pakrashi S, Bhuvaneshwari M, Iswarya V, Chandrasekaran N, Mukherjee A (2014) Toxic effect of Cr(VI) in presence of n-TiO2 and n-Al2O3 particles towards freshwater microalgae. Aquat Toxicol 146:28–37

    CAS  Article  Google Scholar 

  6. Deng X-Y, Cheng J, Hu X-L, Wang L, Li D, Gao K (2017) Biological effects of TiO2 and CeO2 nanoparticles on the growth, photosynthetic activity, and cellular components of a marine diatom Phaeodactylum tricornutum. Sci Total Environ 575:87–96

    CAS  Article  Google Scholar 

  7. Gagnon C, Bruneau A, Turcotte P, Pilote M, Gagné F (2018) Fate of cerium oxide nanoparticles in natural waters and immunotoxicity in exposed rainbow trout. J Nanomed Nanotechnol 9:8

    Article  Google Scholar 

  8. Han J, Lee S, Choi K, Kim J, Ha D, Lee C-G, An B, Lee S-H, Mizuseki H, Choi J-W, Kang S (2016) Effect of nitrogen doping on titanium carbonitride-derived adsorbents used for arsenic removal. J Hazard Mater 302:375–385

    CAS  Article  Google Scholar 

  9. Huang J, Cheng J, Yi J (2016) Impact of silver nanoparticles on marine diatom Skeletonema costatum. J Appl Toxicol 36:1343–1354

    CAS  Article  Google Scholar 

  10. Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM (2018) Cyanobacterial blooms. Nat Rev Microbiol 16:471–483

    CAS  Article  Google Scholar 

  11. Jain R, Jordan N, Weiss S, Foerstendorf H, Heim K, Kacker R, Hübner R, Kramer H, van Hullebusch ED, Farges F, Lens PNL (2015) Extracellular polymeric substances govern the surface charge of biogenic elemental selenium nanoparticles. Environ Sci Technol 49:1713–1720

    CAS  Article  Google Scholar 

  12. Kroll A, Behra R, Kaegi R, Sigg L (2014) Extracellular polymeric substances (EPS) of freshwater biofilms stabilize and modify CeO2 and Ag nanoparticles. PLoS ONE 9:e110709

    Article  Google Scholar 

  13. Leung Y, Yung MMN, Ng AMC, Ma APY, Wong SWY, Chan CMN, Ng Y, Djurisic AB, Guo M, Wong MT, Leung FCC, Chan WK, Leung KMY, Lee HK (2015) Toxicity of CeO2 nanoparticles-the effect of nanoparticle properties. J Photoch Photobio B 145:48–59

    CAS  Article  Google Scholar 

  14. McLean TI (2013) "Eco-omics": a review of the application of genomics, transcriptomics, and proteomics for the study of the ecology of harmful algae. Microb Ecol 65:901–915

    CAS  Article  Google Scholar 

  15. Melegari SP, Perreault F, Moukha S, Popovic R, Creppy EE, Matias WG (2012) Induction to oxidative stress by saxitoxin investigated through lipid peroxidation in neuro 2A cells and Chlamydomonas reinhardtii alga. Chemosphere 89:38–43

    CAS  Article  Google Scholar 

  16. Middepogu A, Hou J, Gao X, Lin D (2018) Effect and mechanism of TiO2 nanoparticles on the photosynthesis of Chlorella pyrenoidosa. Ecotox Environ Safe 161:497–506

    CAS  Article  Google Scholar 

  17. Mwaanga P, Carraway ER, van den Hurk P (2014) The induction of biochemical changes in Daphnia magna by CuO and ZnO nanoparticles. Aquat Toxicol 150:201–209

    CAS  Article  Google Scholar 

  18. Ni L, Li D, Hu S, Wang P, Li S, Li Y, Li Y, Acharya K (2015) Effects of artemisinin sustained-release granules on mixed alga growth and microcystins production and release. Environ Sci Pollut R 22:18637–18644

    CAS  Article  Google Scholar 

  19. Okupnik A, Contardo-Jara V, Pflugmacher S (2015) Potential role of engineered nanoparticles as contaminant carriers in aquatic ecosystems: Estimating sorption processes of the cyanobacterial toxin microcystin-LR by TiO2 nanoparticles. Colloids Surf A 481:460–467

    CAS  Article  Google Scholar 

  20. Peng G, Martin RM, Dearth SP, Sun X, Boyer GL, Campagna SR, Lin S, Wilhelm SW (2018) Seasonally relevant cool temperatures interact with N chemistry to increase microcystins produced in lab cultures of Microcystis aeruginosa NIES-843. Environ Sci Technol 52:4127–4136

    CAS  Article  Google Scholar 

  21. Röhder LA, Brandt T, Sigg L, Behra R (2014) Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short term effects to the green algae Chlamydomonas reinhardtii. Aquat Toxicol 152:121–130

    Article  Google Scholar 

  22. Ranjith KS, Dong C-L, Lu Y-R, Huang Y-C, Chen C-L, Saravanan P, Asokan K, Rajendra Kumar RT (2018) Evolution of visible photocatalytic properties of Cu-doped CeO2 nanoparticles: Role of Cu2+-mediated oxygen vacancies and the mixed-valence states of Ce ions. ACS Sustain Chem Eng 6:8536–8546

    CAS  Article  Google Scholar 

  23. Rodea-Palomares I, Boltes K, Fernandez-Pinas F, Leganes F, Garcia-Calvo E, Santiago J, Rosal R (2011) Physicochemical characterization and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms. Toxicol Sci 119:135–145

    CAS  Article  Google Scholar 

  24. Saison C, Perreault F, Daigle JC, Fortin C, Claverie J, Morin M, Popovic R (2010) Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii. Aquat Toxicol 96:109–114

    CAS  Article  Google Scholar 

  25. Sendra M, Moreno-Garrido I, Blasco J, Araújo CVM (2018) Effect of erythromycin and modulating effect of CeO2 NPs on the toxicity exerted by the antibiotic on the microalgae Chlamydomonas reinhardtii and Phaeodactylum tricornutum. Environ Pollut 242:357–366

    CAS  Article  Google Scholar 

  26. Wang Z, Li J, Zhao J, Xing B (2011) Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environ Sci Technol 45:6032–6040

    CAS  Article  Google Scholar 

  27. Zilliges Y, Kehr JC, Meissner S, Ishida K, Mikkat S, Hagemann M, Kaplan A, Borner T, Dittmann E (2011) The cyanobacterial hepatotoxin microcystin binds to proteins and increases the fitness of microcystis under oxidative stress conditions. PLoS ONE 6:e17615

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Natural Science Foundation of Jiangsu Province (No. BK20161404) and National Natural Science Foundation of China (Grant No. 41571130061).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ying Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guiqi Zhao and Di Wu have contributed equally and should be considered co-first authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, G., Wu, D., Cao, S. et al. Effects of CeO2 Nanoparticles on Microcystis aeruginosa Growth and Microcystin Production. Bull Environ Contam Toxicol 104, 834–839 (2020). https://doi.org/10.1007/s00128-020-02842-9

Download citation

Keywords

  • CeO2 nanoparticles
  • Cyanobacteria
  • Microcystis aeruginosa
  • Microcystin