Skip to main content

Effect of Low-Dose Nano Titanium Dioxide Intervention on Cd Uptake and Stress Enzymes Activity in Cd-Stressed Cowpea [Vigna unguiculata (L.) Walp] Plants

Abstract

Cadmium contamination of agricultural soils is a serious problem due to its toxic effects on health and yield of crop plants. This study investigates the potential of low-dose nano-TiO2 as soil nanoremediation on Cd toxicity in cowpea plants. To achieve this goal, cowpea seeds were germinated on Cd-spiked soils at 10 mg/kg for 14 days and later augmented with 100 mg nTiO2/kg (nTiO2-50 nm and bTiO2-68 nm, respectively). The results showed that chlorophylls were not altered by nano-TiO2 intervention. Cadmium partitioning in roots and leaves was reduced by the applied nano-TiO2 but significantly higher than control. Ascorbate peroxidase and catalase activities in roots and leaves were promoted by nano-TiO2 intervention compared to control and sole Cd, respectively. However, magnitudes of activity of enzyme activities were higher in nTiO2 compared to bTiO2 treatments. The enhanced enzymes activity led to reduced malonaldehyde content in plant tissues. The study concludes that soil application of nano-TiO2 could be a green alternative to ameliorate soil Cd toxicity in cowpea plants.

This is a preview of subscription content, access via your institution.

Fig. 1

(Adapted from Ogunkunle et al. 2020a)

Fig. 2
Fig. 3

References

  1. Abhilash PC, Tripathi V, Adil Edrisi S, Kant Dubey R, Bakshi M, Dubey PK, Singh HB, Ebbs SD (2016) Sustainability of crop production from polluted lands. Energy Ecol Environ 1(1):54–65

    Article  Google Scholar 

  2. Aebi H (1974) Catalases. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 2. Academic Press, New York, pp 673–684

    Chapter  Google Scholar 

  3. Akanbi-Gada MA, Ogunkunle CO, Vishwakarma V, Viswanathan K, Fatoba PO (2019) Phytotoxicity of nano-zinc oxide to tomato plant (Solanum lycopersicum L.): Zn uptake, stress enzymes response and influence on non-enzymatic antioxidants in fruits. Environ Technol Innov. https://doi.org/10.1016/j.eti.2019.100325

    Article  Google Scholar 

  4. Beyer WF, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566

    CAS  Article  Google Scholar 

  5. Clement L, Hurel C, Mrmier N (2013) Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants – effects of size and crystalline structure. Chemosphere 90:1083–1090

    CAS  Article  Google Scholar 

  6. Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Nair AR, Munters E, Artois TJ, Nawrot TS, Vangronsveld J, Smeets K (2010) Cadmium stress: an oxidative challenge. Biometals 23:927–940

    CAS  Article  Google Scholar 

  7. Cuypers A, Hendrix S, dos Reis RA, De Smet S, Deckers J, Gielen H, Jozefczak M, Loix C, Vercampt H, Vangronsveld J, Kuenen E (2016) Hydrogen peroxide, signaling in disguise during metal phytotoxicity. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00470

    Article  Google Scholar 

  8. DalCorso G, Farinati S, Maistri S, Furini A (2008) How plants cope with cadmium: staking all on metabolism and gene expression. J Integr Plant Biol 50:1268–1280

    CAS  Article  Google Scholar 

  9. del Rıo LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes, production, scavenging and role in cell signalling. Plant Physiol 141:330–335

    Article  Google Scholar 

  10. El-Ramady H, Alshaal T, Abowaly M, Abdalla N, Taha HS, Al-Saeedi AH, Shalaby T, Amer M, Fári M, Domokos-Szabolcsy E, Sztrik A, Prokisch J, Selmar D, PilonSmits EAH, Pilon M (2017) Nanoremediation for sustainable crop production. In: Ranjan S, et al. (eds) Nanoscience in food and agriculture 5, Sustainable Agriculture Reviews. Springer, Cham

    Google Scholar 

  11. Fan X, Wang P, Wang C, Hu B, Wang X (2017) Lead accumulation (adsorption and absorption) by the freshwater bivalve Corbicula fluminea in sediments contaminated by TiO2 nanoparticles. Environ Pollut 231:712–721

    CAS  Article  Google Scholar 

  12. Hund-Rinke K, Klawonn T (2013) Investigation of widely used nanomaterials and gold nanoparticles in standardized ecotoxicological tests. Published by the Federal Environment Agency (Umweltbundesamt), Dessau-Roblau, pp 10–13

  13. Huybrechts M, Cuypers A, Deckers J, Iven V, Vandionant S, Jozefczak M, Hendrix S (2019) Cadmium and plant development: an agony from seed to seed. Int J Mol Sci. https://doi.org/10.3390/ijms20163971

    Article  Google Scholar 

  14. Jozefczak M, Keunen E, Schat H, Bliek M, Hernandez LE, Carleer R, Remans T, Bohler S, Vangronsveld J, Cuypers A (2014) Differential response of Arabidopsis leaves and roots to cadmium: glutathione-related chelating capacity vs antioxidant capacity. Plant Physiol Biochem 83:1–9

    CAS  Article  Google Scholar 

  15. Kim B, Murayama M, Colman BP, Hochella MF (2012) Characterization and environmental implications of nano- and larger TiO2 particles in sewage sludge, and soils amended with sewage sludge. J Environ Monit. https://doi.org/10.1039/c2em10809g

    Article  Google Scholar 

  16. Larue C, Baratange C, Vantelon D, Khodja H, Surblé S, Elger A, Carrière M (2018) Influence of soil type on TiO2 nanoparticle fate in an agro-ecosystem. Sci Total Environ 630:609–617

    CAS  Article  Google Scholar 

  17. Lee DH, Lee CB (2000) Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Sci 159:75–85

    CAS  Article  Google Scholar 

  18. Li J, Naeem MS, Wang X, Liu L, Chen C, Ma N, Zang C (2015) Nano-TiO2 is not phytotoxic as revealed by the oilseed rape growth and photosynthetic apparatus ultrastructural response. PLoS ONE. https://doi.org/10.1371/journal.pone.0143885

    Article  Google Scholar 

  19. Lu J, Liu D, Yang X, Liu H, Liu S, Tang H, Zhao Y, Cui F (2015) Sedimentation of TiO2 nanoparticles in aqueous solutions: influence of pH, ionic strength, and adsorption of humic acid. Desalin Water Treat 57:18817–18824

    Article  Google Scholar 

  20. Luo Z, Li M, Wang Z, Li J, Guo J, Rosenfeldt RR, Seitz F, Yan C (2018) Effect of titanium dioxide nanoparticles on the accumulation and distribution of arsenate in Daphnia magna in the presence of an algal food. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-018-2265-y

    Article  Google Scholar 

  21. Lyu S, Wei X, Chen J, Wang C, Wang X, Pan D (2017) Titanium as a beneficial element for crop production. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00597

    Article  Google Scholar 

  22. Mallampati SR, Mitoma Y, Okuda T, Sakita S, Kakeda M (2013) Total immobilization of soil heavy metals with nano-Fe/Ca/CaO dispersion mixtures. Environ Chem Lett 11:119–125

    CAS  Article  Google Scholar 

  23. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  24. Ogunkunle CO, Varun M, Ogundele IG, Olorunmaiye KS, Paul MS (2018a) Citrus epicarp-derived biochar reduced Cd uptake and ameliorates oxidative stress in young Abelmoschus esculentus (L.) Moench (okra) under low Cd stress. Bull Environ Contamin Toxicol 100(6):827–833

    CAS  Article  Google Scholar 

  25. Ogunkunle CO, Jimoh MA, Asogwa NT, Vishwanathan K, Vishwakarma V, Fatoba PO (2018b) Effects of manufactured nano-copper on copper uptake, bioaccumulation and enzyme activities in cowpea grown on soil substrate. Ecotoxicol Environ Saf 155:86–93

    CAS  Article  Google Scholar 

  26. Ogunkunle CO, Bornmann B, Wagner R, Fatoba PO, Frahm R, Lützenkirchen-Hecht D (2019) Copper uptake, tissue partitioning and biotransformation evidence by XANES in cowpea (Vigna unguiculata L.) grown in soil amended with nanosized copper particles. Environ Nanotechnol Monit Manag. https://doi.org/10.1016/j.enmm.2019.100231

    Article  Google Scholar 

  27. Ogunkunle CO, Odulaja DA, Akande FO, Varun M, Vishwakarma V, Fatoba PO (2020a) Cadmium toxicity in cowpea plant: effect of foliar intervention of nano-TiO2 on tissue Cd bioaccumulation, stress enzymes and potential dietary health risk. J Biotechnol. https://doi.org/10.1016/j.jbiotec.2020.01.009

    Article  Google Scholar 

  28. Ogunkunle CO, Adegboye EF, Okoro HK, Vishwakarma V, Alagarsamy K, Fatoba PO (2020b) Effect of nanosized anatase TiO2 on germination, stress defense enzymes and fruit nutritional quality of Abelmoschus esculentus (L.) Moench (Okra). Arab J Geosci. https://doi.org/10.1007/s12517-020-5121-6

    Article  Google Scholar 

  29. Rico CM, Peralta-Videa JR, Gardea-Torresdey JL (2014) Chemistry, biochemistry of nanoparticles, and their role in antioxidant defense system in plants. In: Siddiqui NJ (ed) Nanotechnology and plant sciences. Springer, New York

    Google Scholar 

  30. Servin AD, Castillo-Michel H, Hernandez-Viezcas JA, Diaz BC, Peralta-Videa JR, Gardea-Torresdey JL (2012) Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environ Sci Technol 46:7637–7643

    CAS  Article  Google Scholar 

  31. Servin AD, Morales MI, Castillo-Michel H, Hernandez-Viezcas JA, Munoz B, Zhao L, Nunez JE, Peralta-Videa JR, Gardea-Torresdey JL (2013) Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ Sci Technol 47:11592–11598

    CAS  Article  Google Scholar 

  32. Sharaf El-Deen S, Zhang FS (2016) Immobilisation of TiO2-nanoparticles on sewage sludge and their adsorption for cadmium removal from aqueous solutions. J Exp Nanosci 11:239–258

    CAS  Article  Google Scholar 

  33. Song U, Lee E (2010) Ecophysiological responses of plants after sewage sludge compost applications. J Plant Biol 53:259–267

    CAS  Article  Google Scholar 

  34. Song U, Jun H, Waldman B, Roh J, Kim Y, Yi EJ (2013) Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf 93:60–67

    CAS  Article  Google Scholar 

  35. Tumburu L, Andersen CP, Rygiewicz PT, Reichman JR (2015) Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants. Environ Toxicol Chem 34:70–83

    CAS  Article  Google Scholar 

  36. Wang P, Lombi E, Zhao FJ, Kopittke PM (2016) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21:699–712

    CAS  Article  Google Scholar 

  37. Wang C, Du X, Liu Y (2017) Measuring spatial spillover effects of industrial emissions: a method and case study in Anhui province, China. J Clean Prod 141:1240–1248

    CAS  Article  Google Scholar 

  38. Yang J, Cao W, Rui Y (2017) Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms. J Plant Interact 12(1):158–169

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Clement O. Ogunkunle.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ogunkunle, C.O., Gambari, H., Agbaje, F. et al. Effect of Low-Dose Nano Titanium Dioxide Intervention on Cd Uptake and Stress Enzymes Activity in Cd-Stressed Cowpea [Vigna unguiculata (L.) Walp] Plants. Bull Environ Contam Toxicol 104, 619–626 (2020). https://doi.org/10.1007/s00128-020-02824-x

Download citation

Keywords

  • Nanoparticles
  • Titanium dioxide
  • Antioxidant enzymes
  • Metal uptake
  • Nanoremediation