Skip to main content

Assessment of River Water Quality in an Agricultural Region of Brazil Using Biomarkers in a Native Neotropical Fish, Astyanax spp. (Characidae)

Abstract

Intensive agricultural and livestock activities demand high pesticide use and, consequently, contaminants reach aquatic ecosystems. In the lower Jacuí River, southern Brazil, there is a lack of knowledge about pesticide residues in water samples and the biochemical responses in native fish species. Thus, this study aimed to estimate the influence of pesticide residues and water parameters to biomarker responses in the native fish Astyanax spp. We performed seasonal biomonitoring in 2017 with water samples and fish collections. Biomarkers of oxidative stress, antioxidants, biotransformation, and neurotoxicity were analyzed in fish tissues. Fourteen pesticide residues were detected; they presented correlations with detoxification enzyme and oxidative stress biomarkers. These data indicate that most of variations can be related to the pesticide presence in water indicating high aquatic pollution in this place.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Ali SF, LeBel CP, Bondy SC (1992) Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity. Neurotoxicology 13:637–648

    CAS  Google Scholar 

  2. Amado LL, Garcia ML, Ramos PB et al (2009) A method to measure total antioxidant capacity against peroxyl radicals in aquatic organisms: application to evaluate microcystins toxicity. Sci Total Environ. https://doi.org/10.1016/j.scitotenvi.2008.11.038

    Article  Google Scholar 

  3. Baldisserotto B (2013) Fisiologia de peixes aplicada à piscicultura, 3rd edn. Ed. da UFSM, Santa Maria, pp 231–233

    Google Scholar 

  4. Bashnin TB, Verhaert V, de Jonge M et al (2019) Relationship between pesticide accumulation in transplanted zebra mussel (Dreissena polymorpha) and community structure of aquatic macroinvertebrates. Environ Pollut. https://doi.org/10.1016/j.envpol.2019.05.140

    Article  Google Scholar 

  5. Bianchi E, Dalzochio T, Simões LAR et al (2018) Water quality monitoring of the Sinos River Basin, Southern Brazil, using physicochemical and microbiological analysis and biomarkers in laboratory-exposed fish. Ecohydrol Hydrobiol. https://doi.org/10.1016/j.ecohyd.2019.05.002

    Article  Google Scholar 

  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Article  Google Scholar 

  7. Brauner EV, Raaschou-Nielsen O, Gaudreau E et al (2012) Predictors of adipose tissue concentrations of organochlorine pesticides in a general Danish population. J Expo Sci Environ Epidemiol. https://doi.org/10.1038/jes.2011.39

    Article  Google Scholar 

  8. CONAMA – Conselho Nacional do Meio Ambiente (2005) Resolução Nº 357 de 17 de março de 2005, Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Diário Oficial da União 53:58–63

    Google Scholar 

  9. Costa-Silva DG, Nunes MEM, Wallau GL et al (2015) Oxidative stress markers in fish (Astyanax sp. and Danio rerio) exposed to urban and agricultural effluents in the Brazilian Pampa biome. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-015-4737-7

    Article  Google Scholar 

  10. de Lemos CT, de Iranço FA, De Oliveira NC et al (2008) Biomonitoring of genotoxicity using micronuclei assay in native population of Astyanax jacuhiensis (Characiformes: Characidae) at sites under petrochemical influence. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2008.07.006

    Article  Google Scholar 

  11. Deknock A, de Troyer N, Houbraken M et al (2019) Distribution of agricultural pesticides in the freshwater environment of the Guayas river basin (Ecuador). Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2018.07.185

    Article  Google Scholar 

  12. Donato FF, Martins ML, Munaretto JS et al (2015) Development of a multiresidue method for pesticide analysis in drinking water by solid phase extraction and determination by gas and liquid chromatography with triple quadrupole tandem mass spectrometry. J Braz Chem Soc. https://doi.org/10.5935/0103-5053.20150192

    Article  Google Scholar 

  13. dos Santos DR, Yamamoto FY, Neto FF et al (2016) The applied indicators of water quality may underestimate the risk of chemical exposure to human population in reservoirs utilized for human supply – Southern Brazil. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-015-5995-0

    Article  Google Scholar 

  14. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    CAS  Article  Google Scholar 

  15. Ellman GL, Courtney KD, Andres V Jr (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    CAS  Article  Google Scholar 

  16. Espel D, Diepens NJ, Boutron O et al (2019) Dynamics of the seagrass Zostera noltei in a shallow Mediterranean lagoon exposed to chemical contamination and other stressors. Estuar Coast Shelf Sci. https://doi.org/10.1016/j.ecss.2019.03.019

    Article  Google Scholar 

  17. Etchegoyen MA, Ronco AE, Almada P et al (2017) Occurrence and fate of pesticides in the Argentine stretch of the Paraguay-Paraná basin. Environ Monit Assess. https://doi.org/10.1007/s10661-017-5773-1

    Article  Google Scholar 

  18. Francisco CM, Bertolino SM, Oliveira RJ Jr et al (2019) Genotoxicity assessment of polluted urban streams using a native fish Astyanax altiparanae. J Toxicol Environ Heal A. https://doi.org/10.1080/15287394.2019.1624235

    Article  Google Scholar 

  19. Furley TH, Brodeur J, de Assis HCS et al (2017) Toward sustainable environmental quality: identifying priority research questions for Latin America. Integr Environ Assess Manag. https://doi.org/10.1002/ieam.2023

    Article  Google Scholar 

  20. Gonçalves CR, Marins AT, do Amaral AMB et al (2018) Biochemical responses in freshwater fish exposed to insecticide propoxur. Bull Environ Contam Toxicol. https://doi.org/10.1007/s00128-018-2285-9

    Article  Google Scholar 

  21. Habig WH, Pabst MJ, Jacoby WB (1974) Glutathione S-transferase, the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  22. IBAMA – Instituo Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (2019) Relatórios de comercialização de agrotóxicos. https://www.ibama.gov.br/agrotoxicos/relatorios-de-comercializacao-de-agrotoxicos#boletinsanuais. Accessed 11 Oct 2019

  23. IBGE – Instituto Brasileiro de Geografia e Estatística (2019) Dados estatísticas do Estado do Rio Grande do Sul. https://www.ibge.gov.br/cidades-e-estados/rs/. Accessed 11 Oct 2019

  24. ICMBio/MMA – Instituto Chico Mendes de Conservação da Biodiversidade, Ministério do Meio Ambiente (2018) Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. https://www.icmbio.gov.br/portal/component/content/article/10187. Accessed 12 Nov 2019

  25. Loro V, Murussi C, Menezes C et al (2015) Spatial and temporal biomarkers responses of Astyanax jacuhiensis (Cope, 1894) (Characiformes: Characidae) from the middle rio Uruguai, Brazil. Neotrop Ichthyol. https://doi.org/10.1590/1982-0224-20140146

    Article  Google Scholar 

  26. Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol. https://doi.org/10.1016/j.aquatox.2010.10.006

    Article  Google Scholar 

  27. Martins GL, Friggi CA, Prestes OD et al (2014) Simultaneous LC-MS/MS determination of imidazolinone herbicides together with other multiclass pesticide residues in soil. Clean (Weinh). https://doi.org/10.1002/clen.201300140

    Article  Google Scholar 

  28. Miller TH, Ng KT, Bury ST et al (2019) Biomonitoring of pesticides, pharmaceuticals and illicit drugs in a freshwater invertebrate to estimate toxic or effect pressure. Environ Int 129:595–606. https://doi.org/10.1016/j.envint.2019.04.038

    CAS  Article  Google Scholar 

  29. Modesto KA, Martinez CBR (2010) Roundup® causes oxidative stress in liver and inhibited the acethylcholinesterase in muscle and brain of the fish Prochilodus lineatus. Chemosphere 78:294–299

    CAS  Article  Google Scholar 

  30. Nunes MEM, Müller TE, Murussi C et al (2018) Oxidative effects of the acute exposure to a pesticide mixture of cypermethrin and chlorpyrifos on carp and zebrafish – a comparative study. Comp Biochem Phys C. https://doi.org/10.1016/j.cbpc.2018.03.002

    Article  Google Scholar 

  31. Oliveira FA, Reis LPG, Soto-Blanco B et al (2015) Pesticides residues in the Prochilodus costatus (Valenciennes, 1850) fish caught in the São Francisco River, Brazil. J Environ Sci Health B. https://doi.org/10.1080/03601234.2015.1011946

    Article  Google Scholar 

  32. Prado PS, Pinheiro APB, Bazzoli N et al (2014) Reproductive biomarkers responses induced by xenoestrogens in the characid fish Astyanax fasciatus inhabiting a South American reservoir: an integrated field and laboratory approach. Environ Res. https://doi.org/10.1016/j.envres.2014.03.002

    Article  Google Scholar 

  33. Prado PS, Souza CC, Bazzoli N et al (2011) Reproductive disruption in lambari Astyanax fasciatus from a Southeastern Brazilian reservoir. Ecotoxicol Environ Safe. https://doi.org/10.1016/j.ecoenv.2011.07.017

    Article  Google Scholar 

  34. Rooney RC, Davy C, Gilbert J et al (2019) Periphyton bioconcentrates pesticides downstream of catchment dominated by agricultural land use. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2019.134472

    Article  Google Scholar 

  35. Sakuragui MM, Paulino MG, Pereira CS et al (2013) Integrated use of antioxidant enzymes and oxidative damage in two fish species to assess pollution in man-made hydroelectric reservoirs. Environ Pollut. https://doi.org/10.1016/j.envpol.2013.02.032

    Article  Google Scholar 

  36. SEMA, DRH – Secretaria Estadual do Meio Ambiente, Departamento de Recursos Hídricos (2012) Relatório Anual sobre a Situação dos Recursos Hídricos no Estado do Rio Grande do Sul – Ano 2009/2010. SEMA/DRH, Porto Alegre

    Google Scholar 

  37. SEMA, DRH – Secretaria Estadual do Meio Ambiente, Departamento de Recursos Hídricos (2015) Relatório final: Planejamento da Bacia Hidrográfica do Baixo Jacuí, Fases “A”, “B” e “C”. SEMA/DRH, Porto Alegre

    Google Scholar 

  38. SNIS – Sistema Nacional de Informações sobre Saneamento (2020) Painel de Indicadores. https://appsnis.mdr.gov.br/acompanhamento/web/agua_esgoto/mapa-esgoto

  39. Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci. https://doi.org/10.1016/S0168-9452(99)00197-1

    Article  Google Scholar 

  40. Verdouw H, Van Echteld CJA, Dekkers EMJ (1978) Ammonia determinations based on indophenol formation with sodium salicylate. Water Res 12:399–402

    CAS  Article  Google Scholar 

  41. Vieira CED, MdaS A, Galindo BA et al (2014) Integrated biomarker response index using a Neotropical fish to assess the water quality in agricultural areas. Neotrop Ichthyol. https://doi.org/10.1590/S1679-62252014000100017

    Article  Google Scholar 

  42. Vieira CED, Costa PG, Caldas SS et al (2019) An integrated approach in subtropical agro-ecosystems: active biomonitoring, environmental contaminants, bioaccumulation, and multiple biomarkers in fish. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2019.02.209

    Article  Google Scholar 

  43. Wood R, Mitrovic SM, Lim RP et al (2016) How benthic diatoms within natural communities respond to eight common herbicides with different modes of action. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2016.03.142

    Article  Google Scholar 

  44. Yamamoto FY, Garcia JRE, Kupsco A et al (2017) Vitellogenin levels and others biomarkers show evidences of endocrine disruption in fish species from Iguaçu River – Southern Brazil. Chemosphere. https://doi.org/10.1016/j.chemosphere.2017.07.111

    Article  Google Scholar 

  45. Zhang W, Chen L, Xu Y et al (2019) Amphibian (Rana nigromaculata) exposed to cyproconazole: changes in growth index, behavioral endpoints, antioxidant biomarkers, thyroid and gonad development. Aquat Toxicol. https://doi.org/10.1016/j.aquatox.2018.12.015

    Article  Google Scholar 

Download references

Acknowledgement

This work was partially supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil (CAPES) – Finance Code 001. Vania Lucia Loro received a research fellowship from CNPq (National Research Council), Process Number: 309314/2017-8. Aline Teixeira Marins received a doctoral fellowship from CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior). The authors would like to thank Pedro Henrique Pinto Leão, Rudy Beskow, and Renata Teixeira Marins for technical support. Special thanks to the citizens of the Cachoeira do Sul city.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vania Lucia Loro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marins, A.T., Severo, E.S., Leitemperger, J.W. et al. Assessment of River Water Quality in an Agricultural Region of Brazil Using Biomarkers in a Native Neotropical Fish, Astyanax spp. (Characidae). Bull Environ Contam Toxicol 104, 575–581 (2020). https://doi.org/10.1007/s00128-020-02821-0

Download citation

Keywords

  • Bioindicator
  • Biomarkers
  • Biomonitoring
  • Fish
  • Pesticides