Skip to main content

Engineered Pyrogenic Materials as Tools to Affect Arsenic Mobility in Old Mine Site Soil of Mediterranean Region

Abstract

The application of pyrogenic materials in immobilization processes of metalloids represents a burning issue in environmental and waste applications and management. The main objective of this study was to characterize the effect of biomass pretreatment by Cu, Fe and Mg blending and pyrolysis temperature on As sorption efficiency as a model of anionic metalloids from model solutions and As immobilization in old mine soil by pyrogenic materials. The physico-chemical characterization of engineered materials produced in slow pyrolysis process at 400 and 700°C from metal-blended hard wood chips (30% w/w) showed increasing of surface areas (1.4–1.8-fold), changes in pH, and more than 50% decrease in total C content. The batch sorption processes of As ions by Cu-modified pyrogenic materials (CuPM), Fe-modified pyrogenic materials (FePM), and Mg-modified pyrogenic materials (MgPM) showed increasing uptake in order CuPM700 (Qmax 2.56 mg g−1) < CuPM400 (Qmax 3.88 mg g−1) < FePM700 (Qmax 5.90 mg g−1) < MgPM700 (Qmax 7.42 mg g−1) < MgPM400 (Qmax 9.59 mg g−1) < FePM400 (Qmax 10.55 mg g−1). Engineered pyrogenic materials produced at 400°C showed higher immobilization effect on soluble As in soil pore water of old mine site soil from Mediterranean area. FePM400 reduced mobility of arsenic > 3.2 times and MgPM400 > 5 times compared to control. Promising pyrogenic material MgPM400 showed immobilization effect also on additional heavy metals (Cd, Cu, Fe, Mn, Pb, Sr, Zn) present in studied soil.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Akgűl G, Maden TB, Diay E, Moreno-Jiménez E (2018) Modification of tea biochar with Mg, fe, Mn and Al salts for efficient sorption of PO3-4 and Cd2+ from aqueous solutions. J Water Reuse Desal 9:57–66. https://doi.org/10.2166/wrd.2018.018

    CAS  Article  Google Scholar 

  2. Bhattacharya P, Welch AH, Stollenwerk KG, McLaughlin MJ, Bundschuh J, Panaullah G (2007) Arsenic in the environment: biology and chemistry. Sci Total Environ 379:109–120. https://doi.org/10.1016/j.scitotenv.2007.02.037

    CAS  Article  Google Scholar 

  3. Bucheli TD, Bachmann HJ, Blum F, Bűrge D, Giger R, Hilber I (2014) On the heterogeneity of biochar and consequences for its representative sampling. J Anal Appl Pyrol 107:25–30. https://doi.org/10.1016/j.jaap.2014.01.020

    CAS  Article  Google Scholar 

  4. Choppala G, Bolan N, Kunhikrishnan A, Bush R (2016) Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate. Chemosphere 144:374–381. https://doi.org/10.1016/j.chemosphere.2015.08.043

    CAS  Article  Google Scholar 

  5. Dang VM, Joseph S, Van HT, Main TLA, Duong TMH, Weldon S, Munroe P, Mitchel D, Taherymoosavi S (2018) Immobilization of heavy metals in contaminated soil after mining activity by using biochar and other industrial by-products: the significant role of minerals on the biochar surfaces. Environ Technol. https://doi.org/10.1080/09593330.2018.1468487

    Article  Google Scholar 

  6. Dieguez-Alonso A, Anca-Couce A, Frišták V, Moreno-Jiménez E, Bacher M, Bucheli TD, Cimò G, Conte P, Hagermann N, Haller A, Hilber I, Husson O, Kammann C, Kienz N, Leifeld J, Rosenau T, Soja G, Schmidt HP (2019) Designing biochar properties through the blending of biomass feedstock with metals: impact on oxyanions adsorption behavior. Chemosphere 214:743–753. https://doi.org/10.1016/j.chemosphere.2018.09.091

    CAS  Article  Google Scholar 

  7. Enders A, Lehmann J (2012) Comparison of wet-digestion and dry-ashing methods for total elemental analysis of biochar. Commun Soil Sci Plan 43:1042–1052. https://doi.org/10.1080/00103624.2012.656167

    CAS  Article  Google Scholar 

  8. Flora SJS (2015) Arsenic: chemistry, occurence and exposure. Handbook of arsenic toxicology. Elsevier Inc, Amsterdam, pp 1–49

    Google Scholar 

  9. Fresno T, Moreno-Jiménez E, Peñalosa JM (2016) Assessing the combination of iron sulfate and organic materials as amendment for an arsenic and copper contaminated soil. A chemical and ecotoxicological approach. Chemosphere 165:539–546. https://doi.org/10.1016/j.chemosphere.2016.09.039

    CAS  Article  Google Scholar 

  10. Frišták V, Micháleková-Richveisová B, Víglašová E, Ďuriška L, Galamboš M, Moreno-Jiménez E, Pipíška M, Soja G (2017) Sorption separation of Eu and As from single-component systems by Fe-modified biochar: kinetic and equlibrium study. J Iran Chem Soc 14:521–530. https://doi.org/10.1007/s13738-016-1000-1

    CAS  Article  Google Scholar 

  11. Hu X, Ding Z, Zimmerman AR, Wang S, Gao B (2015) Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Res 68:206–216. https://doi.org/10.1016/j.watres.2014.10.009

    CAS  Article  Google Scholar 

  12. Komárek M, Vaněk A, Ettler V (2013) Chemical stabilization of metals and arsenic in contaminated soils using oxides – a review. Environ Pollut 172:9–22. https://doi.org/10.1016/j.envpol.2012.07.045

    CAS  Article  Google Scholar 

  13. Lehmann J, Joseph S (2015) Biochar for environmental management: science, technology and implementation. Earthscan from Routledge, London

    Google Scholar 

  14. Micháleková-Richveisová B, Frišták V, Pipíška M, Ďuriška L, Moreno-Jiménez E, Soja G (2017) Iron-impregnated biochars as effective phosphate sorption materials. Environ Sci Pollut Res 24:463–475. https://doi.org/10.1007/s11356-016-7820-9

    CAS  Article  Google Scholar 

  15. Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents – a critical review. J Hazard Mater 142:1–53. https://doi.org/10.1016/j.jhazmat.2007.01.006

    CAS  Article  Google Scholar 

  16. Moreno-Jimenéz E, Manzano R, Esteban E, Peñalosa J (2010) The fate of arsenic in soils adjacent to an old mine site (Bustarviejo, Spain): mobility and transfer to native flora. J Soils Sedim 10:301–312. https://doi.org/10.1007/s11368-009-0099-4

    CAS  Article  Google Scholar 

  17. Sips R (1948) The structure of a catalyst surface. J Chem Phys 16:490–495. https://doi.org/10.1063/1.1746922

    CAS  Article  Google Scholar 

  18. Viglašová E, Galamboš M, Danková Z, Krivosudský L, Lengauer CL, Hood-Nowotny R, Soja G, Rompel A, Matík M, Briančin J (2018) Production, characterization and adsorption studies of bamboo-based biochar/montmorillonite composite for nitrate removal. Waste Manag 79:385–394. https://doi.org/10.1016/j.wasman.2018.08.005

    CAS  Article  Google Scholar 

  19. Vithanage M, Herath I, Joseph S, Bundschuh J, Bolan N, Ok YS, Kirkham MB, Rinklebe J (2017) Interaction of arsenic with biochar in soil and water: a critical review. Carbon 113:219–230. https://doi.org/10.1016/j.carbon.2016.11.032

    CAS  Article  Google Scholar 

  20. Wang S, Gao B, Zimmerman AR, Li Y, Ma L, Harris WG, Migliaccio KW (2015) Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresour Technol 175:391–395. https://doi.org/10.1016/j.biortech.2014.10.104

    CAS  Article  Google Scholar 

  21. Wu C, Cui M, Xue S, Li W, Huang L, Jiang X, Qian Z (2018) Remediation of arsenic-contaminated paddy soil by iron-modified biochar. Environ Sci Pollut Res 25:20792–20801. https://doi.org/10.1007/s11356-018-2268-8

    CAS  Article  Google Scholar 

  22. Wu J, Lu J, Zhang C, Zhang Z, Min X (2019) Adsorptive removal of tetracyclines and fluoroquinolones using yak dung biochar. Bull Environ Contam Toxicol 102:407–412. https://doi.org/10.1007/s00128-018-2516-0

    CAS  Article  Google Scholar 

  23. Yao Y, Gao B, Chen J, Yang L (2013) Engineered biochar reclaiming phosphate from agueous solutions: Mechanisms and potential application as a slow-release fertilizer. Environmen Sci Technol 47:8700–8708. https://doi.org/10.1021/es4012977

    CAS  Article  Google Scholar 

  24. Yin D, Wang X, Peng B, Tan Ch, Ma L (2017) Effect of biochar and Fe-biochar on Cd and As mobility and transfer in soil-rice system. Chemosphere 186:928–937. https://doi.org/10.1016/j.chemosphere.2017.07.126

    CAS  Article  Google Scholar 

  25. Yoon K, Cho DW, Tsang DCW, Bolan N, Rinklebe J, Song H (2017) Fabrication of engineered biochar from paper mill sludge and its application into removal of arsenic and cadmium in acidic water. Bioresour Technol 246:69–75

    CAS  Article  Google Scholar 

  26. Zhang M, Gao B (2013) Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite. Chem Eng J 226:286–292. https://doi.org/10.1016/j.cej.201304.077

    CAS  Article  Google Scholar 

  27. Zhu Q, Wu J, Wang L, Yang G, Zhang X (2016) Adsorption characteristics of Pb2+ onto wine lees-derived biochar. Bull Environ Contam Toxicol 97:294–299. https://doi.org/10.1007/s00128-016-1760-4

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful M.Sc David Erwin Berthold for language proof. This work was financially supported by Trnava University in Trnava (Project Number 2/TU/2019), Scientific Grant Agency of ministry of Education, Science, Research and Sport of the Slovak Republic (Project Number VEGA 1/0110/19) and European Cooperation in Science and Technology (COST Action TD1107).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vladimír Frišták.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Frišták, V., Moreno-Jiménez, E., Bucheli, T.D. et al. Engineered Pyrogenic Materials as Tools to Affect Arsenic Mobility in Old Mine Site Soil of Mediterranean Region. Bull Environ Contam Toxicol 104, 265–272 (2020). https://doi.org/10.1007/s00128-019-02778-9

Download citation

Keywords

  • Engineered pyrogenic material
  • Pyrolysis
  • Arsenic
  • Immobilization
  • Sorption