Skip to main content

Feasible Green Strategy for the Quantitative Bioaccumulation of Heavy Metals by Lemna minor: Application of the Self-Thinning Law

Abstract

This study involved the development of mathematical linear regression models to describe the relationships between mean plant biomass (M) and population density (D), M and frond diameter (L), frond numbers (N) and L of Lemna minor under different initial population densities (3200, 4450, and 6400 plants/m2), respectively, from the perspective of the self-thinning law. Our results revealed that the value of the allometric exponents for M and D were − 3/2. Further, the concentrations of Zn, Pb, Cu, Fe, and Ni accumulated in L. minor plants were 0.86, 0.32, 0.36, 0.62, and 0.39 mg/kg, respectively. Based on these developed equations and the heavy metal accumulations by L. minor, the phytoremediation capacity of L. minor was quantified via its frond diameters. Overall, the present study provides a cost-effective green method for managing the phytoremediation of heavy metal-contaminated aquatic environments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Bokhari SH, Ahmad I, Mahmood-Ul-Hassan M, Mohammad A (2016) Phytoremediation potential of Lemna minor L. for heavy metals. Int J Phytorem 18:25–32. https://doi.org/10.1080/15226514.2015.1058331

    CAS  Article  Google Scholar 

  2. Charru M, Seynave I, Morneau F, Rivoire M, Bontemps JD (2012) Significant differences and curvilinearity in the self-thinning relationships of 11 temperate tree species assessed from forest inventory data. Ann For Sci 69:195–205. https://doi.org/10.1007/s13595-011-0149-0

    Article  Google Scholar 

  3. Cucu AK, Topkaya M, Erdogan G, Aboul-Enein HY (2019) Quantitative determination of heavy metal contamination in horse mackerel and whiting caught in the sea of Marmara. Bull Environ Contam Toxicol 102:498–503. https://doi.org/10.1007/s00128-019-02574-5

    CAS  Article  Google Scholar 

  4. Daud MK et al (2018) Potential of Duckweed (Lemna minor) for the phytoremediation of landfill leachate. J Chem 2018:1–9. https://doi.org/10.1155/2018/3951540

    CAS  Article  Google Scholar 

  5. Driever SM, van Nes EH, Roijackers RMM (2005) Growth limitation of Lemna minor due to high plant density. Aquat Bot 81:245–251. https://doi.org/10.1016/j.aquabot.2004.12.002

    Article  Google Scholar 

  6. Duarte CM, Kalff J (1990) Biomass density and the relationship between submerged macrophyte biomass and plant growth form. Hydrobiologia 196:17–23. https://doi.org/10.1007/bf00008889

    Article  Google Scholar 

  7. Enquist BJ et al (1998) Allometric scaling of plant energetics and population density. Nature 395:163–165. https://doi.org/10.1038/25977

    CAS  Article  Google Scholar 

  8. Frederic M, Samir L, Louise M, Abdelkrim A (2006) Comprehensive modeling of mat density effect on duckweed (Lemna minor) growth under controlled eutrophication. Water Res 40:2901–2910. https://doi.org/10.1016/j.watres.2006.05.026

    CAS  Article  Google Scholar 

  9. Hu CW, Liu L, Li XL, Xu YD, Ge ZG, Zhao YJ (2018) Effect of graphene oxide on copper stress in Lemna minor L.: evaluating growth, biochemical responses, and nutrient uptake. J Hazard Mater 341:168–176. https://doi.org/10.1016/j.jhazmat.2017.07.061

    CAS  Article  Google Scholar 

  10. Kufel L, Strzałek M, Przetakiewicz A (2018) Plant response to overcrowding – Lemna minor example. Acta Oecol 91:73–80. https://doi.org/10.1016/j.actao.2018.06.007

    Article  Google Scholar 

  11. Lesage E, Rousseau DP, Meers E, Tack FM, De Pauw N (2007) Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium. Sci Total Environ 380:102–115. https://doi.org/10.1016/j.scitotenv.2006.10.055

    CAS  Article  Google Scholar 

  12. Liu Y, Sanguanphun T, Yuan W, Cheng JJ, Meetam M (2017) The biological responses and metal phytoaccumulation of duckweed Spirodela polyrhiza to manganese and chromium. Environ Sci Pollut Res Int 24:19104–19113. https://doi.org/10.1007/s11356-017-9519-y

    CAS  Article  Google Scholar 

  13. Mateos-Naranjo E, Galle A, Florez-Sarasa I, Perdomo JA, Galmes J, Ribas-Carbo M, Flexas J (2015) Assessment of the role of silicon in the Cu-tolerance of the C4 grass Spartina densiflora. J Plant Physiol 178:74–83. https://doi.org/10.1016/j.jplph.2015.03.001

    CAS  Article  Google Scholar 

  14. Mcgrath SP, Shen ZG, Zhao FJ (1997) Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils. Plant Soil 188:153–159. https://doi.org/10.1023/A:1004248123948

    CAS  Article  Google Scholar 

  15. Miretzky P, Saralegui A, Cirelli AF (2004) Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere 57:997–1005. https://doi.org/10.1016/j.chemosphere.2004.07.024

    CAS  Article  Google Scholar 

  16. Peltzer DA, Allen RB, Bellingham PJ, Richardson SJ, Wright EF, Knightbridge PI, Mason NWH (2014) Disentangling drivers of tree population size distributions. For Ecol Manag 331:165–179. https://doi.org/10.1016/j.foreco.2014.06.037

    Article  Google Scholar 

  17. Pilon-Smits E, Pilon M (2002) Phytoremediation of metals using transgenic plants. Crit Rev Plant Sci 21:439–456. https://doi.org/10.1080/0735-260291044313

    CAS  Article  Google Scholar 

  18. Pons TL, Lambers H, Chapin FS (2000) Plant physiology ecology. Springer, New York

    Google Scholar 

  19. Radic S et al (2010) Ecotoxicological assessment of industrial effluent using duckweed (Lemna minor L.) as a test organism. Ecotoxicology 19:216–222. https://doi.org/10.1007/s10646-009-0408-0

    CAS  Article  Google Scholar 

  20. Rai PK (2008) Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach. Int J Phytorem 10:133–160. https://doi.org/10.1080/15226510801913918

    CAS  Article  Google Scholar 

  21. Reich PB, Tjoelker MG, Machado JL, Oleksyn J (2006) Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 439:457–461. https://doi.org/10.1038/nature04282

    CAS  Article  Google Scholar 

  22. Sasmaz M, Arslan Topal EI, Obek E, Sasmaz A (2015) The potential of Lemna gibba L. and Lemna minor L. to remove Cu, Pb, Zn, and As in gallery water in a mining area in Keban, Turkey. J Environ Manag 163:246–253. https://doi.org/10.1016/j.jenvman.2015.08.029

    CAS  Article  Google Scholar 

  23. Sun H, Zhang J, Duan A, He C (2011) Estimation of the self-thinning boundary line within even-aged Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) stands: onset of self-thinning. For Ecol Manag 261:1010–1015. https://doi.org/10.1016/j.foreco.2010.12.019

    Article  Google Scholar 

  24. Sun H et al (2018) Relationship between size inequality and stand productivity is modified by self-thinning, age, site and planting density in Sassafras tzumu plantations in central. China For Ecol Manag 422:199–206. https://doi.org/10.1016/j.foreco.2018.02.003

    Article  Google Scholar 

  25. Sun Y et al (2019) Growth, physiological function, and antioxidant defense system responses of Lemna minor L. to decabromodiphenyl ether (BDE-209) induced phytotoxicity. Plant Physiol Biochem 139:113–120. https://doi.org/10.1016/j.plaphy.2019.03.018

    CAS  Article  Google Scholar 

  26. Ucuncu E, Tunca E, Fikirdesici S, Ozkan AD, Altindag A (2013) Phytoremediation of Cu, Cr and Pb mixtures by Lemna minor. Bull Environ Contam Toxicol 91:600–604. https://doi.org/10.1007/s00128-013-1107-3

    CAS  Article  Google Scholar 

  27. Unutkan T, Koyuncu I, Diker C, Firat M, Buyukpinar C, Bakirdere S (2019) Accurate and sensitive analytical strategy for the determination of antimony: hydrogen assisted T-shaped slotted quartz tube-atom trap-flame atomic absorption spectrometry. Bull Environ Contam Toxicol 102:122–127. https://doi.org/10.1007/s00128-018-2504-4

    CAS  Article  Google Scholar 

  28. West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126. https://doi.org/10.1126/science.276.5309.122

    CAS  Article  Google Scholar 

  29. Westoby M (1984) The self-thinning rule. Adv Ecol Res 14:167–225

    Article  Google Scholar 

  30. Yoda K, Kira T, Ogawa H, Hozumi K (1963) Self-thinning in overcrowded pure stands under cultivated and natural conditions. J Biol Osaka City Univ 14:107–129

    Google Scholar 

  31. Zeide B (1987) Analysis of the 3/2 power law of self-thinning. For Sci 33:517–537. https://doi.org/10.1016/0378-1127(87)90002-8

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2016YFD0600204) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Honghua Ruan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Gao, P., Ding, N. et al. Feasible Green Strategy for the Quantitative Bioaccumulation of Heavy Metals by Lemna minor: Application of the Self-Thinning Law. Bull Environ Contam Toxicol 104, 282–287 (2020). https://doi.org/10.1007/s00128-019-02772-1

Download citation

Keywords

  • Self-thinning law
  • Phytoaccumulation
  • Heavy metals
  • Lemna minor