Skip to main content

Advertisement

Log in

Adsorption–Desorption Behavior of Polar Imidazolinone Herbicides in Tropical Paddy Fields Soils

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Analysis of herbicides sorption behavior in soil is critical in predicting their fate and possible harmful side effects in the environment. Application of polar imidazolinone herbicides is growing in tropical agricultural fields. Imidazolinones have high leaching potential and are persistent. In this study, adsorption–desorption of imazapic and imazapyr herbicides were evaluated in different types of Malaysian agricultural soils. Effects of soil parameters were also investigated on the soils’ sorption capacities. The adsorption data fitted best to Freundlich isotherm (R2 > 0.991). The herbicides adsorptions were physical and spontaneous processes as ΔG values were negative and below 40 kJ/mol. The adsorption correlated positively with clay content, total organic carbon (TOC) content, and cation exchange capacity (CEC). There were strong negative correlations between hysteresis index and these factors indicating their importance in imidazolinones immobilization and, thus, their pollution reduction in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahmad R, Rahman A (2009) Sorption characteristics of atrazine and imazethapyr in soils of New Zealand: importance of independently determined sorption data. J Agric Food Chem 57:10866–10875

    Article  CAS  Google Scholar 

  • Aichele TM, Penner D (2005) Adsorption, desorption, and degradation of imidazolinones in soil. Weed Technol 19:154–159

    Article  CAS  Google Scholar 

  • Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12

    Article  Google Scholar 

  • Azmi M, Azlan S, Yim KM, George TV, Chew SE (2012) Control of weedy rice in direct-seeded rice using the clearfield production system in Malaysia. Pak J Weed Sci Res 18:49–53

    Google Scholar 

  • Beretta AN, Silbermann AV, Paladino L, Torres D, Bassahun D et al (2014) Soil texture analyses using a hydrometer: modification of the Bouyoucos method. Cienc Investig Agrar 41:263–271

    Google Scholar 

  • Bousbaa S, Meniai AH (2014) Removal of phenol from water by adsorption onto sewage sludge based adsorbent. Chem Eng 40:235–240

    Google Scholar 

  • Bresnahan GA, Koskinen WC, Dexter AG, Lueschen WE (2000) Influence of soil pH − sorption interactions on imazethapyr carry-over. J Agric Food Chem 48:1929–1934

    Article  CAS  Google Scholar 

  • Carter MC, Kilduff JE, Weber WJ (1995) Site energy distribution analysis of preloaded adsorbents. Environ Sci Technol 29:1773–1780

    Article  CAS  Google Scholar 

  • Chirukuri R, Atmakuru R (2015) Sorption characteristics and persistence of herbicide bispyribac sodium in different global soils. Chemosphere 138:932–939

    Article  CAS  Google Scholar 

  • Dolaptsoglou C, Karpouzas DG, Menkissoglu-Spiroudi U, Eleftherohorinos I, Voudrias EA (2007) Influence of different organic amendments on the degradation, metabolism, and adsorption of terbuthylazine. J Environ Qual 36:1793–1802

    Article  CAS  Google Scholar 

  • Firmino LE, Tuffi Santos LD, Ferreira FA, Ferreira LR, Tiburcio RAS (2008) Imazapyr sorption in soils with different textures. Planta Daninha 26:395–402

    Article  Google Scholar 

  • Gianelli VR, Bedmar F, Costa JL (2014) Persistence and sorption of imazapyr in three Argentinean soils. Environ Toxicol Chem 33:29–34

    Article  CAS  Google Scholar 

  • Hites RA (2006) Persistent organic pollutants in the Great Lakes. Springer, New York

    Book  Google Scholar 

  • Huang H, Legarsky J, Othman M (2007) Land-cover classification using Radars at and Landsat imagery for St. Louis, Missouri. Photogramm Eng Remote Sens 73:37–43

    Article  Google Scholar 

  • Jones JB Jr (2001) Laboratory guide for conducting soil tests and plant analysis. CRC Press, New York

    Book  Google Scholar 

  • Kah M, Brown CD (2006) Adsorption of ionisable pesticides in soils. In: Ware GW (ed) Reviews of environmental contamination and toxicology. Springer, New York, pp 149–217

    Chapter  Google Scholar 

  • Klute A (1986) Methods of soil analysis. Part 1. Physical and mineralogical methods. American Society of Agronomy, Madison

    Google Scholar 

  • Kraemer AF, Marchesan E, Avila LA, Machado SLO, Grohs M (2009) Environmental fate of imidazolinone herbicides: a review. Planta Daninha 27:629–639

    Article  Google Scholar 

  • Limousin G, Gaudet JP, Charlet L, Szenknect S, Barthes V, Krimissa M (2007) Sorption isotherms: a review on physical bases, modeling and measurement. Appl Geochem 22:249–275

    Article  CAS  Google Scholar 

  • Marinho M, Souza WM, Cabral MF, Castro Neto MD, Queiroz MELR, Silva AA (2018) Sorption–desorption behavior of imazethapyr and imazapic on six Brazilian soils. Planta Daninha. https://doi.org/10.1590/s0100-83582018360100140

    Article  Google Scholar 

  • Martini LFD, Mezzomo RF, Avila LAD, Massey JH et al (2013) Imazethapyr and imazapic runoff under continuous and intermittent irrigation of paddy rice. Agric Water Manag 125:26–34

    Article  Google Scholar 

  • Minasny B, McBratney AB, Brough DM, Jacquier D (2011) Models relating soil pH measurements in water and calcium chloride that incorporate electrolyte concentration. Eur J Soil Sci 62:728–732

    Article  CAS  Google Scholar 

  • Oliveira MFD, Prates HT, Santanna DP, Oliveira Júnior RSD (2006) Imazaquin sorption in surface and subsurface soil samples. Pesqui Agropecu Bras 41:461–468

    Article  Google Scholar 

  • Organization for Economic Co-operation and Development (OECD) (2000) OECD guideline for the testing of chemicals 106, adsorption–desorption using a batch equilibrium method. OECD, Paris

    Google Scholar 

  • Oufqir S, El Madani M, El Belghiti MA et al (2017) Adsorption of imazethapyr on six agricultural soils of Morocco: Evaluation of the impact of soil properties. Arab J Chem 10:S2944–S2949

    Article  CAS  Google Scholar 

  • Porfiri C, Montoya JC, Koskinen WC, Azcarate MP (2015) Adsorption and transport of imazapyr through intact soil columns taken from two soils under two tillage systems. Geoderma 251:1–9

    Article  Google Scholar 

  • Pusino A, Petretto S, Gessa C (1997) Adsorption and desorption of imazapyr by soil. J Agric Food Chem 45:1012–1016

    Article  CAS  Google Scholar 

  • Regitano JB, Alleoni LRF, Vidal-Torrado P, Casagrande JC, Tornisielo VL (2000) Imazaquin sorption in highly weathered tropical soils. J Environ Qual 29:894–900

    Article  CAS  Google Scholar 

  • Regitano JB, da Rocha WS, Alleoni LR (2005) Soil pH on mobility of imazaquin in oxisols with positive balance of charges. J Agric Food Chem 53:4096–4102

    Article  CAS  Google Scholar 

  • Sakaliene O, Papiernik SK, Koskinen WC, Spokas KA (2007) Sorption and predicted mobility of herbicides in Baltic soils. J Environ Sci Heal B 42:641–647

    Article  CAS  Google Scholar 

  • Tang Z, Zhang W, Chen Y (2009) Adsorption and desorption characteristics of monosulfuron in Chinese soils. J Hazard Mater 166:1351–1356

    Article  CAS  Google Scholar 

  • Wauchope RD, Yeh S, Linders JBHJ, Kloskowski R, Tanaka K et al (2002) Pesticide soil sorption parameters: theory, measurement, uses, limitations and reliability. Pest Manag Sci 58:419–445

    Article  CAS  Google Scholar 

  • Wu C, Zhang S, Nie G, Zhang Z, Wang J (2011) Adsorption and desorption of herbicide monosulfuron-ester in Chinese soils. J Environ Sci 23:1524–1532

    Article  CAS  Google Scholar 

  • Yu X, Pan L, Ying G, Kookana RS (2010) Enhanced and irreversible sorption of pesticide pyrimethanil by soil amended with biochars. J Environ Sci 22:615–620

    Article  CAS  Google Scholar 

  • Zhang H, Lin K, Wang H, Gan J (2010) Effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene. Environ Pollut 158:2821–2825

    Article  CAS  Google Scholar 

  • Zhang J, Fu H, Lv X, Tang J, Xu X (2011) Removal of Cu (II) from aqueous solution using the rice husk carbons prepared by the physical activation process. Biomass Bioenerg 35:464–472

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by ministry of higher education (MOHE) of Malaysia under fundamental research grant scheme (FRGS) (Grant Number 0153AB-L33) and by Universiti Teknologi PETRONAS (UTP) under Yayasan UTP (YUTP) (Grant Number 015LC0-027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasiman B. Sapari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yavari, S., Sapari, N.B., Malakahmad, A. et al. Adsorption–Desorption Behavior of Polar Imidazolinone Herbicides in Tropical Paddy Fields Soils. Bull Environ Contam Toxicol 104, 121–127 (2020). https://doi.org/10.1007/s00128-019-02759-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-019-02759-y

Keywords

Navigation