Skip to main content

In-Situ Immobilization of Cd-Contaminated Soils Using Ferronickel Slag as Potential Soil Amendment

Abstract

The current study investigated the efficiency and mechanisms of in situ immobilization of artificially Cd-contaminated soils with ferronickel slag (FNS). The available Cd content of soil was measured and the modified European Community Bureau of Reference (BCR) sequential extraction procedure (SEP) was adopted to quantify the evolutions of Cd chemical speciation after the immobilization by the FNS. The results showed that the addition of FNS (5%‒15%) remarkably reduced the available Cd content and increased the pH and cation exchange capacity of soils. The passivation rate of Cd increased from 58.13% to 73.25% as the spiked Cd content rose from 10 to 120 mg kg‒1. The BCR SEP test revealed that the FNS addition substantially reduced the acid soluble fraction and increased the residual fraction of Cd, indicating the reduction of mobility and bioavailability of Cd in soils. The chemical precipitation, ion exchange and surface complexation might be involved in in situ immobilization of Cd-contaminated soils by the FNS.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Antonkiewicz J, Jasiewicz Cz, Gambuś F, Kowalewska A, Pełka R, Koncewicz-Baran M, Lošák T, Hlušek J (2016) The effect of combustion wastes on cadmium phytoavailability. In: Proceedings from international conference “Soil – the non-renewable environmental source”. Mendel University in Brno, Brno, pp 9‒21. http://www.soil.frrms.mendelu.cz/cz/conference_proceedings

  2. Chen HP, Yang XP, Wang P, Wang ZX, Li M, Zhao FJ (2018) Dietary cadmium intake from rice and vegetables and potential health risk: a case study in Xiangtan, southern china. Sci Tot Environ 639:271–277. https://doi.org/10.1016/j.scitotenv.2018.05.050

    Article  CAS  Google Scholar 

  3. El-Eswed BI, Yousef RI, Alshaaer M, Hamadneh I, Al-Gharabli SI, Khalili F (2015) Stabilization/solidification of heavy metals in kaolin/zeolite based geopolymers. Int J Miner Process 137:34–42. https://doi.org/10.1016/j.minpro.2015.03.002

    Article  CAS  Google Scholar 

  4. Goulding KWT (2016) Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manag 32(3):390–399. https://doi.org/10.1111/sum.12270

    Article  CAS  Google Scholar 

  5. Guo GL, Zhou QX, Ma LQ (2006) Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review. Environ Monit Assess 116(1–3):513–528. https://doi.org/10.1007/s10661-006-7668-4

    Article  CAS  Google Scholar 

  6. Hamon RE, Mclaughlin MJ, Cozens G (2002) Mechanisms of attenuation of metal availability in in situ remediation treatments. Environ Sci Technol 36(18):3991–3996. https://doi.org/10.1021/es025558g

    Article  CAS  Google Scholar 

  7. Huang YD, Wang Q, Shi MX (2017) Characteristics and reactivity of ferronickel slag powder. Constr Build Mater 156:773–789. https://doi.org/10.1016/j.conbuildmat.2017.09.038

    Article  CAS  Google Scholar 

  8. Jha VK, Kameshima Y, Nakajima A, Okada K (2004) Hazardous ions uptake behavior of thermally activated steel-making slag. J Hazard Mater 114(1–3):139–144. https://doi.org/10.1016/j.jhazmat.2004.08.004

    Article  CAS  Google Scholar 

  9. Kang SS, Park K, Kim D (2014) Potential soil contamination in areas where ferronickel slag is used for reclamation work. Materials 7(10):7157–7172. https://doi.org/10.3390/ma7107157

    Article  Google Scholar 

  10. Kim SU, Owens VN, Kim YG, Lee SM, Park HC, Kim KK, Son HJ, Hong CO (2015) Effect of phosphate addition on cadmium precipitation and adsorption in contaminated arable soil with a low concentration of cadmium. Bull Environ Contam Toxicol 95(5):675–679. https://doi.org/10.1007/s00128-015-1621-6

    Article  CAS  Google Scholar 

  11. Kim Y, Kim M, Sohn J, Park H (2018) Applicability of gold tailings, waste limestone, red mud, and ferronickel slag for producing glass fibers. J Clean Prod 203:957–965. https://doi.org/10.1016/j.jclepro.2018.08.230

    Article  Google Scholar 

  12. Komnitsas K, Zaharaki D, Bartzas G (2013) Effect of sulphate and nitrate anions on heavy metal immobilisation in ferronickel slag geopolymers. Appl Clay Sci 73(S1):103–109. https://doi.org/10.1016/j.clay.2012.09.018

    Article  CAS  Google Scholar 

  13. Kusznierewicz B, Baczek-Kwinta R, Bartoszek A, Piekarska A, Huk A, Manikowska A, Antonkiewicz J, Namieśnik J, Konieczka P (2012) The dose-dependent influence of zinc and cadmium contamination of soil on their uptake and glucosinolate content in white cabbage (Brassica oleracea var. capitata f. alba). Environ Toxicol Chem 31(11):2482–2489. https://doi.org/10.1002/etc.1977

    Article  CAS  Google Scholar 

  14. Lee SH, Lee JS, Choi YJ, Kim JG (2009) In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere 77(8):1069–1075. https://doi.org/10.1016/j.chemosphere.2009.08.056

    Article  CAS  Google Scholar 

  15. Liang A, Wang ZY, Dong YQ, Hou HB, Mao XH, Zhou M (2019) Study on passivation of Pb contaminated soil and transformation of Pb forms. Environ Pollut Control 41(4):407–411. https://doi.org/10.15985/j.cnki.1001-3865.2019.04.007 (in Chinese)

    Article  Google Scholar 

  16. Nejad ZD, Jung MC, Kim KH (2017) Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environ Geochem Health 40(3):927–953. https://doi.org/10.1007/s10653-017-9964-z

    Article  CAS  Google Scholar 

  17. Nguyen TC, Loganathan P, Nguyen TV, Kandasamy J, Naidu R, Vigneswaran S (2018) Adsorptive removal of five heavy metals from water using blast furnace slag and fly ash. Environ Sci Pollut Res 25(21):20430–20438. https://doi.org/10.1007/s11356-017-9610-4

    Article  CAS  Google Scholar 

  18. Otsuki N, Yodsudjai W, Nishida T (2007) Feasibility study on soil improvement using electrochemical technique. Constr Build Mater 21(5):1046–1051. https://doi.org/10.1016/j.conbuildmat.2006.02.001

    Article  Google Scholar 

  19. Park B, Son Y (2017) Ultrasonic and mechanical soil washing processes for the removal of heavy metals from soils. Ultrason Sonochem 35(SI):640–645. https://doi.org/10.1016/j.ultsonch.2016.02.002

    Article  CAS  Google Scholar 

  20. Pellera FM, Gidarakos E (2015) Effect of dried olive pomace-derived biochar on the mobility of cadmium and nickel in soil. J Environ Chem Eng 3(2):1163–1176. https://doi.org/10.1016/j.jece.2015.04.005

    Article  CAS  Google Scholar 

  21. Rauret G, López-Sánchez JF, Sahuquillo A, Rubio R, Davidson C, Ure A, Quevauviller P (1999) Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J Environ Monit 1(1):57–61. https://doi.org/10.1039/A807854H

    Article  CAS  Google Scholar 

  22. Taleei MM, Ghomi NK, Sal Jozi (2019) Arsenic removal of contaminated soils by phytoremediation of vetiver grass, chara algae and water hyacinth. Bull Environ Contam Toxicol 102(1):134–139. https://doi.org/10.1007/s00128-018-2495-1

    Article  CAS  Google Scholar 

  23. Wang ML, Liu RH, Lu XY, Zhu ZY, Wang HL, Jiang L, Liu JJ, Wu ZH (2018) Heavy metal contamination and ecological risk assessment of swine manure irrigated vegetable soils in Jiangxi Province. China. Bull Environ Contam Toxicol 100(5):634–640. https://doi.org/10.1007/s00128-018-2315-7

    Article  CAS  Google Scholar 

  24. Weng CH, Huang CP (1994) Treatment of metal industrial wastewater by fly ash and cement fixation. J Environ Eng 120(6):1470–1487. https://doi.org/10.1061/(ASCE)0733-9372(1994)120:6(1470)

    Article  CAS  Google Scholar 

  25. Xia BD, Li RF, Zhao XY, Dang QL, Zhang DP, Tan WB (2018) Constraints and opportunities for the recycling of growing ferronickel slag in China. Resour Conserv Recycl 139:15–16. https://doi.org/10.1016/j.resconrec.2018.08.002

    Article  Google Scholar 

  26. Yang LY, Wen TT, Wang LP, Miki T, Bai H, Lu X, Yu HF, Nagasaka T (2019) The stability of the compounds formed in the process of removal Pb(II), Cu(II) and Cd(II) by steelmaking slag in an acidic aqueous solution. J Environ Manage 231:41–48. https://doi.org/10.1016/j.jenvman.2018.10.028

    Article  CAS  Google Scholar 

  27. Zhang ZH, Zhu YC, Yang T, Li LF, Zhu HJ, Wang H (2017) Conversion of local industrial wastes into greener cement through geopolymer technology: a case study of high-magnesium nickel slag. J Clean Prod 141:463–471. https://doi.org/10.1016/j.jclepro.2016.09.147

    Article  CAS  Google Scholar 

  28. Zhou HB, Meng HB, Zhao LX, Shen YJ, Hou YQ, Cheng HS, Song LQ (2018) Effect of biochar and humic acid on the copper, lead, and cadmium passivation during composting. Bioresour Technol 258:279–286. https://doi.org/10.1016/j.biortech.2018.02.086

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research & Development Program of China (2018YFC1900604) and National Natural Science Foundation of China (51674017). The authors gratefully appreciated the Guangxi Jinyuan Nickel Industry Co., Ltd., China for providing ferronickel slag samples.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pingfeng Fu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fu, P., Yang, H., Zhang, G. et al. In-Situ Immobilization of Cd-Contaminated Soils Using Ferronickel Slag as Potential Soil Amendment. Bull Environ Contam Toxicol 103, 756–762 (2019). https://doi.org/10.1007/s00128-019-02719-6

Download citation

Keywords

  • Ferronickel slag
  • Cd-contaminated soil
  • Immobilization
  • Passivation mechanism
  • Soil amendment