Skip to main content

An Investigation into the Accumulation of Air Borne Trace Metals in the Lungs of Common Myna Acridotheres tristis and Bank Myna Acridotheres ginginianus Captured from Urban and Semi Urban Areas of Lahore and Pattoki, Pakistan

Abstract

With increasing urbanization and industrialization, clean air is becoming a scarce resource. During the present investigation, concentrations of metals (Pb, Ni and Zn) in the atmosphere and their subsequent deposition in the lungs of two common avian species, common myna, Acridotheres tristis (n = 30) and bank myna, A. ginginianus (n = 20), captured from urban areas of Lahore city and semi-urban areas of Pattoki city 80 km away from main city of Lahore were determined. The obtained results were analyzed statistically using Independent sample t test and Pearson’s correlation. A comparison of trace metal concentrations in air of both the cities was also carried out. Statistically, significant variations were recorded for Pb (t (7) = − 4.276, p = 0.001) while non-significant differences were observed for both Ni (t (7) = 0.049, p = 0.962) and Zn (t (7) = 1.555, p = 0.146).

This is a preview of subscription content, access via your institution.

References

  1. Abbasi AN, Khan MU, Jaspers VLB, Chaudhry MJI, Malik RN (2015) Spatial and interspecific variation of accumulated trace metals between remote and urbane dwelling birds of Pakistan. Ecotoxicol Environ Saf 113:279–286

    CAS  Article  Google Scholar 

  2. Abdullah M, Fasola M, Muhammad A, Malik SA, Bostan N, Bokhari H, Kamran MA, Shafqat MN, Alamdar A, Khan M, Ali N, Eqani SAMAS (2015) Avian feathers as a non-destructive bio-monitoring tool of trace metals signatures: a case study from severely contaminated areas. Chemosphere 119:553–561

    CAS  Article  Google Scholar 

  3. Aksu A (2015) Sources of metal pollution in the urban atmosphere (A case study: Tuzla, Istanbul). J Environ Health Sci 13:79

    Article  Google Scholar 

  4. Ali Z, Rauf A, Sidra S, Nasir ZA, Colbeck I (2015) Air quality (particulate matter) at heavy traffic sites in Lahore, Pakistan. J Anim Plant Sci 25:644–648

    Google Scholar 

  5. Alina M, Azrina A, Mohd Yunus AS, Mohd Zakiuddin S, Mohd Izuan Effendi H, Muhammad Rizal R (2012) Heavy metals (mercury, arsenic, cadmium, plumbum) in selected marine fish and shellfish along the Straits of Malacca. Int Food Res J 19(1):135–140

    CAS  Google Scholar 

  6. AL-Jaboobi M, Zouahri A, Tijane M, El Housni A, Mennane Z, Yachou H, Bouksaim M (2014) Evaluation of heavy metals pollution in groundwater, soil and some vegetables irrigated with wastewater in the Skhirat region “Morocco”. J Mater Environ Sci 5(3):961–966

    Google Scholar 

  7. Amato F, Cassee FR, van der Gon HA, Gehrig R, Gustafsson M, Hafner W, Harrison RM, Jozwicka M, Kelly FJ, Moreno T, Prevot AS (2014) Urban air quality: the challenge of traffic non-exhaust emissions. J Hazard Mater 275:31–36

    CAS  Article  Google Scholar 

  8. Baker NJ, Dahms S, Gerber R, Maina J, Greenfield R (2017) Metal accumulation in house sparrow (Passer domesticus) from Thohoyandou, Limpopo Province, South Africa. Afr Zool 52(1):43–53

    Article  Google Scholar 

  9. Battaglia A, Ghidini S, Campanini G, Spaggiari R (2005) Heavy metal contamination in little owl (Athene noctua) and common buzzard (Buteo buteo) from northern Italy. Ecotoxicol Environ Saf 60:61–66

    CAS  Article  Google Scholar 

  10. Berglund ÅM, Rainio MJ, Eeva T (2015) Temporal trends in metal pollution: using bird excrement as indicator. PLoS ONE 10(2):e0117071

    Article  CAS  Google Scholar 

  11. BirdLife International (2016) Acridotheres ginginianus The IUCN Red List of Threatened Species 2016: e.T22710929A94267934. http://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22710929A94267934.en. Accessed 01 Oct 2018

  12. BirdLife International (2017) Acridotheres tristis (amended version of 2016 assessment). The IUCN Red List of Threatened Species 2017: e.T22710921A111063735. http://dx.doi.org/10.2305/IUCN.UK.2017-1.RLTS.T22710921A111063735.en. Accessed 01 Oct 2018

  13. Brait CH, Filho NR (2011) Use of feathers of feral pigeons (Columba livia) as a technique for metal quantification and environmental monitoring. Environ Monit Assess 179:457–467

    CAS  Article  Google Scholar 

  14. Cohen J (1988) Statistical power analysis for the behavioral sciences. Routledge, London. ISBN 1-134-74270-3

    Google Scholar 

  15. Colbeck I, Sidra S, Ali Z, Ahmed S, Nasir ZA (2018) Spatial and temporal variations in indoor air quality in Lahore, Pakistan. Int J Environ Sci Technol 16(6):2565–2572

    Article  CAS  Google Scholar 

  16. Dauwe T, Bervoets L, Blust R, Pinxten R, Eens M (2000) Can excrement and feathers of nestling songbirds be used as biomonitors for heavy metal pollution? Arch Environ Contam Toxicol 39:541–546

    CAS  Article  Google Scholar 

  17. Dauwe T, Janssens E, Eens M (2006) Effects of heavy metal exposure on the condition and health of adult great tits (Parus major). Environ Pollut 140:71–78

    CAS  Article  Google Scholar 

  18. Esteban M, Castano A (2009) Non-invasive matrices in human biomonitoring: a review. Environ Int 35:438–449

    CAS  Article  Google Scholar 

  19. Geiger A, Cooper J (2010) Overview of airborne metals regulations, exposure limits, health effects, and contemporary research-draft. Appendix C. Cooper Environmental Services LLC, Portland

    Google Scholar 

  20. Gokhale S (2009) Laboratory manual of air pollution sampling and analysis. Curriculum Development Programme, Indian Institute of Technology, Guhawati

    Google Scholar 

  21. Jalees MI, Asim Z (2016) Statistical modeling of atmospheric trace metals in Lahore, Pakistan for correlation and source identification. Environ Earth Sci 75:842

    Article  CAS  Google Scholar 

  22. Kojadinovic J, Bustamante P, Le Corre M, Cosson RP (2007) Trace elements in three marine birds breeding on Reunion Island: part 2-factors influencing their detoxification. Arch Environ Contam Toxicol 52(3):431–440

    CAS  Article  Google Scholar 

  23. Kuboyama K, Sasaki N, Nakagome Y, Kataoka M (2005) Wet digestion. Anal Chem 360:184–191

    Google Scholar 

  24. Lee DP (2006) Distribution and residue level of mercury, cadmium and lead in Korean birds. Bull Environ Contain Toxicol 43:550–555

    Article  Google Scholar 

  25. Lester MB, Charles van Riper III (2014) The distribution and extent of heavy metal accumulation in song sparrows along Arizona’s upper Santa Cruz River. Environ Monit Assess 186:4779–4791

    CAS  Article  Google Scholar 

  26. Lodenius M, Solonen T (2013) The use of feathers of birds of prey as indicators of metal pollution. Ecotoxicol 22:1319–1334

    CAS  Article  Google Scholar 

  27. Maciejczyk P, Zhong M, Lippmann M, Chen LC (2010) Oxidant generation capacity of source-apportioned PM2.5. Inhal Toxicol 22(sup2):29–36

    CAS  Article  Google Scholar 

  28. Markowski M, Kalinski A, Skwarska J, Banbura JWM, Markowski J, Zielinski P, Banbura J (2013) Avian feathers as bioindicators of the exposure to heavy metal contamination of food. Bull Environ Contam Toxicol 91:302–305

    CAS  Article  Google Scholar 

  29. Midander K, Pan J, Wallinder IO, Leygraf C (2007) Metal release from stainless steel particles in vitro—influence of particle size. J Environ Monit 9(1):74–81

    CAS  Article  Google Scholar 

  30. Millaku L, Imeri R, Trebicka A (2014) House sparrow (Passer domesticus) as bioindicator of heavy metals pollution. Eur J Exp Biol 4(6):77–80

    Google Scholar 

  31. Millaku L, Imeri R, Trebicka A (2015) Bioaccumulation of heavy metals in tissues of house sparrow (Passer domesticus). Res J Environ Toxicol 9(2):107–112

    CAS  Article  Google Scholar 

  32. Mohanraj RP, Azeez A, Priscilla T (2004) Heavy metals in airborne particulate matter of urban Coimbatore. Arch Environ Contam Toxicol 47:162–167

    CAS  Article  Google Scholar 

  33. NEQS (2012) National Environmental Quality Standards for Ambient Air. http://www.mocc.gov.pk/moclc/userfiles1/file/MOC/National%20Environment%20Quality%20Standards/NEQS%20for%20Ambient%20Air.pdf

  34. Nighat S, Iqbal S, Nadeem MS, Mahmood T, Shah SI (2013) Estimation of heavy metal residues from the feathers of Falconidae, Accipitridae and Strigidae in Punjab, Pakistan. Turk J Zool 37(4):488–500

    CAS  Google Scholar 

  35. Pant P, Shi Z, Pope FD, Harrison RM (2017) Characterization of traffic-related particulate matter emissions in a road tunnel in Birmingham, UK: trace metals and organic molecular markers. Aerosol Air Qual Res 17:117–130

    CAS  Article  Google Scholar 

  36. Pope CA, Dockery DW (2006) Health effects of fine particle air pollution: lines that connect. J Air Waste Manag 56:709–742

    CAS  Article  Google Scholar 

  37. Qadir A, Malik RN (2009) Assessment of an index of biological integrity (IBI) to quantify the quality of two tributaries of river Chenab, Sialkot, Pakistan. Hydrobiologia 621(1):127–153

    CAS  Article  Google Scholar 

  38. Qadir M, Tubeileh A, Akhtar J, Larbi A, Minhas PS, Khan MA (2008) Productivity enhancement of salt affected environments through crop diversification. Land Degrade Dev 19(4):429–453

    Article  Google Scholar 

  39. Ravindra K, Stranger M, Van Grieken R (2008) Chemical characterization and multivariate analysis of atmospheric PM2.5 particles. J Atmos Chem 59(3):199

    CAS  Article  Google Scholar 

  40. Rothschild RFN, Duffy LK (2005) Mercury concentrations in muscle, brain and bone of Western Alaskan waterfowl. Sci Total Environ 349:277–283

    CAS  Article  Google Scholar 

  41. Sanchez-Triana E, Enriquez S, Afzal J, Nakagawa A, Khan AS (2014) Cleaning Pakistan’s air: policy options to address the cost of outdoor air pollution. World Bank Publications, Washington, DC

    Book  Google Scholar 

  42. Sanderfoot OV, Holloway T (2017) Air pollution impacts on avian species via inhalation exposure and associated outcomes. Environ Res Lett 12(8):083002

    Article  CAS  Google Scholar 

  43. Scheifler R, Coeurdassier M, Morilhat C, Bernard N, Faivre B, Flicoteaux P, Giraudoux P, Noel M, Piotte P, Rieffel D, de Vaufleury A, Badot P-M (2006) Lead concentrations in feathers and blood of common blackbirds (Turduc merula) and in earthworms inhabiting the unpolluted and moderately polluted urban areas. Sci Total Environ 371:197–205

    CAS  Article  Google Scholar 

  44. Sharma C, Nisha V (2017) Assessment of heavy metals in excreta of house crow (Corvus splendens) of Ludhiana. J Entomol Zool Stud 5(4):1891–1895

    Google Scholar 

  45. Sidra S, Ali Z, Chaudhry MN (2013) Avian diversity at new campus of Punjab university in relation to land use change. Pak J Zool 45(4):1069–1082

    Google Scholar 

  46. Wei B, Yang L (2010) A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Micro Chem J 94:99–107

    CAS  Google Scholar 

  47. Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. https://doi.org/10.5402/2011/402647

    Article  Google Scholar 

  48. Xia X, Chen X, Liu R, Liu H (2011) Heavy metals in urban soils with various types of land use in Beijing, China. J Hazard Mater 186:2043–2050

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Financial support by the Higher Education Commission of Pakistan through its Start-Up Research Grant No. 21-1484 is acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Safdar Sidra.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Irshad, N., Sidra, S., Javid, A. et al. An Investigation into the Accumulation of Air Borne Trace Metals in the Lungs of Common Myna Acridotheres tristis and Bank Myna Acridotheres ginginianus Captured from Urban and Semi Urban Areas of Lahore and Pattoki, Pakistan. Bull Environ Contam Toxicol 103, 750–755 (2019). https://doi.org/10.1007/s00128-019-02717-8

Download citation

Keywords

  • Air quality
  • Lead
  • Nickel
  • Common myna
  • Lahore