Skip to main content

Mineral Content in Honeybee Wax Combs as a Measurement of the Impact of Environmental Factors

Abstract

Environmental pollution from metals needs to be constantly monitored due to their predominantly negative impacts on living organisms. As apian products stored in hives are considered useful bioindicators, the objective of this study was to: (a) investigate and compare the essential and toxic metal concentrations in freshly constructed combs (light combs, LC) and old combs (dark combs, DC) in use for two to three beekeeping seasons, and (b) compare the mineral content of beeswax combs from apiaries exposed to different levels of environmental pollution using the energy dispersive x-ray fluorescence method. Concentrations of ten elements (Cr, Pb, Cu, Ni, Fe, Zn, Mn, Sr, Rb, Ca) were determined in 18 honeybee wax comb samples from three apiaries in continental Croatia. The results showed that the influence of comb age and/or geographical origin (representing varying levels of environmental pollution exposure) on the elemental composition of beeswax was evident for the toxic elements Cr, Pb, Cu and Ni, and for the essential elements Fe, Zn, Mn and Sr, but not Rb. In addition to monitoring the environmental element content, wax combs can be used to determine contamination levels. Additionally, in-time analysis results can enable beekeepers to adjust management practices, such as moving apiaries to better positions. They can also be useful in the creation of policies on acceptable limits for toxic metal levels in particular geographical areas.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Abon-Shaara HF (2014) The foraging behaviour of honey bees, Apis mellifera: a review. Vet Med 59:1–10

    Article  Google Scholar 

  2. Aichholz R, Lorbeer E (1999) Investigation of combwax of honeybees with high-temperature gas chromatography and high-temperature gas chromatography—chemical ionization mass spectrometry I. High-temperature gas chromatography. J Chromat A 855:601–615

    CAS  Article  Google Scholar 

  3. Bilandžić N, Gačić M, Đokić M, Sedak M, Ivanec Šipušić Đ, Končurat A, Tlak Gajger I (2014) Major and trace elements levels in multifloral and unifloral honeys in Croatia. J Food Comp Anal 33:132–138

    Article  CAS  Google Scholar 

  4. Bilandžić N, Tlak Gajger I, Kosanović M, Čalopek B, Sedak M, Solomun Kolanović B, Varenina I, Božić Luburić B, Varga I, Đokić M (2017) Essential and toxic element concentrations in monofloral honeys from southern Croatia. Food Chem 234:245–253

    Article  CAS  Google Scholar 

  5. Bogdanov, S (2009) Beeswax book, Chapter 2; Beeswax: production, properties composition and control, bee product science 1–17

  6. Buchwald R, Breed MD, Bjostad L, Hibbard BE, Greenberg AR (2009) The role of fatty acids in the mechanical properties of beeswax. Apidologie 40:585–594

    CAS  Article  Google Scholar 

  7. Burden CM (2016) Sublethal Effects of Heavy Metal and Metalloid Exposure in Honey Bees: Behavioral Modifications and Potential Mechanisms. A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy. Arizona State University

  8. Calatayud-Vernich P, Calatayud F, Simo E, Pico Y (2017) Occurrence of pesticide residues in Spanish beeswax. Sci Total Environ 605(606):745–754

    Article  CAS  Google Scholar 

  9. Caroli S, Forte G, Iamiceli Al, Galoppi B (1999) Determination of essential and potentially toxic trace elements in honey by inductively coupled plasma-based techniques. Talanta 50:327–336

    CAS  Article  Google Scholar 

  10. Chicas-Mosier AM, Cooper BA, Melendez AM, Perez M, Oskay D, Abramson CI (2017) The effects of ingested aqueous aluminium on floral fidelity and foraging strategy in honey bees (Apis mellifera). Ecotox Environ Safe 143:80–86

    CAS  Article  Google Scholar 

  11. Conti ME, Botrè F (2001) Honeybees and their products as potential bioindicators of heavy metals contamination. Environ Monit Assess 69:267–282. https://doi.org/10.1023/A:1010719107006

    CAS  Article  Google Scholar 

  12. Di N, Hladun KR, Zhang K, Liu T, Trumble JT (2016) Laboratory bioassays on the impact of cadmium, copper and lead on the development and survival of honeybee (Apis mellifera L.) larvae and foragers. Chemosphere 152:530–538. https://doi.org/10.1016/j.chemosphere.2016.03.033

    CAS  Article  Google Scholar 

  13. Dietz A (1971) Changes with age in some mineral constituents of worker honey bees: I. Phosphorous, potassium, calcium, magnesium, sodium and iron. J Ga Entomol Soc 6:54–57

    CAS  Google Scholar 

  14. Formicki G, Gren A, Stawarz R, Zysk B, Gal A (2013) Metal content in honey, propolis, wax, and bee pollen and implications for metal pollution monitoring. Pol J Environ Stud 22:99–106

    CAS  Google Scholar 

  15. Giglio A, Ammendola A, Battistella S, Naccarato A, Pallavicini A, Simeon E, Tagarelli A, Giulianini PG (2017) Apis mellifera ligustica, Spinola1806 as bioindicator for detecting environmental contamination: a preliminary study of heavy metal pollution in Trieste, Italy. Environ Sci Pollut Res 24:659–665. https://doi.org/10.1007/s11356-016-7862-z

  16. Grembecka M, Szefer P (2013) Evaluation of honeys and bee products quality based on their mineral composition using multivariate techniques. Environ Monit Assess 185:4033–4047

    CAS  Article  Google Scholar 

  17. He Z, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140

    CAS  Article  Google Scholar 

  18. Hladun KR, Kaftanoglu O, Parker DR, Tran KD, Trumble JT (2013) Effects of selenium on development, survival, and accumulation in the honeybee (Apis mellifera L.). Environ Toxicol Chem 32:1–9. https://doi.org/10.1002/etc.2357

    CAS  Article  Google Scholar 

  19. Hladun KR, Parker DR, Trumble JT (2015) Cadmium, copper, and lead accumulation and bioconcentration in the vegetative and reproductive organs of Raphanus sativus: implications for plant performance and pollination. J Chem Ecol 41:386–395. https://doi.org/10.1007/s10886-015-0569-7

    CAS  Article  Google Scholar 

  20. Hladun KR, Di N, Liu T-XX, Trumble JT (2016) Metal contaminant accumulation in the hive: consequences for whole-colony heath and brood production in the honey bee (Apis mellifera L.). Environ Toxicol Chem 35:322–329. https://doi.org/10.1002/etc.3273

    CAS  Article  Google Scholar 

  21. Johnson RM (2015) Honeybee toxicology. Ann Rev Entomol 60:415–434. https://doi.org/10.1146/annurev-ento-011613-162005

    CAS  Article  Google Scholar 

  22. Kosanović M, Bilandžić N, Sedak M, Kos S, Tlak Gajger I (2019) Concentrations of arsenic, cadmium and mercury in beeswax (Apis mellifera) during its processing from honeycombs to honeycomb foundations. Vet Stn 50:19–25

    Google Scholar 

  23. Leal SS, Botelho HM, Gomes CM (2012) Metal ions as modulators of protein conformation and misfolding in neurodegeneration. Coord Chem Rev 256:2253–2270

    CAS  Article  Google Scholar 

  24. Leita L, Muhlbachova G, Cesco S, Barbattini R, Mondini C (1996) Investigation of the use of honey bees and honey bee products to asses heavy metals contamination. Environ Monit Asses 43:1–9

    CAS  Article  Google Scholar 

  25. Mantovi P, Bonazzi G, Maestri E, Marmiroli N (2003) Accumulation of copper and zinc from liquid manure in agricultural soils and crop plants. Plant Soil 250:249–257

    CAS  Article  Google Scholar 

  26. Marcovecchio JE, Botte SE, Freije RH (2007) Heavy Metals, major metals, trace elements. In: Nollet LM (ed) Handbook of water analysis, 2nd edn. CRC Press, London, pp 275–311

    Google Scholar 

  27. Negri I, Mavris C, DiPrisco G, Caprio E, Pellecchia M (2015) Honeybees (Apis mellifera, L.) as active samplers of airborne particulate matter. PLoS ONE 10:e0132491. https://doi.org/10.1371/journal.pone.0132491

    CAS  Article  Google Scholar 

  28. Orescanin V, Barisic D, Mikelic L, Lovrencic I, Rubcic M, Rozmaric Macefat M, Lulic S (2004) Environmental contamination assessment of the surroundings of the ex-Sibenik’s Ferro-manganese smelter, Croatia. J Environ Sci Health A A39(9):2493–2506

    CAS  Article  Google Scholar 

  29. Orescanin V, Kollar R, Nad K, Lovrencic Mikelic I, Kollar I (2011) Characterization and treatment of water used for human consumption from six sources located in the Cameron/Tuba city abandoned uranium mining area. J Environ Sci Health, Part A 6:627–635

    Article  CAS  Google Scholar 

  30. Perugini M, Manera M, Grotta L, Abete MC, Tarasco R, Amorena M (2011) Heavy metal (Hg, Cr, Cd, and Pb) contamination in urban areas and wild life reserves: honeybees as bioindicators. Biol Trace Elem Res 140:170–176. https://doi.org/10.1007/s12011-010-8688-z

    CAS  Article  Google Scholar 

  31. Porrini C, Sabatini AG, Girotti S, Ghini S, Medrzycki P, Grillenzoni F, Bartolotti L, Gattavecchia E, Celli G (2003) Honey bees and bee products as monitors of the environmental contamination. Apiacta 38:63–70

    Google Scholar 

  32. Rashed MN, El-Haty MTA, Mohamed SM (2009) Bee honey as environmental indicator for pollution with heavy metals. Toxicol Environ Chem 91:389–403. https://doi.org/10.1080/02772240802294870

    CAS  Article  Google Scholar 

  33. Ravoet J, Reybroeck W, De Graaf DC (2015) Pesticides for apicultural and/or Agricultural application found in Belgian bee wax combs. Bull Environ Contam Toxicol 94:543–548

    CAS  Article  Google Scholar 

  34. Silici S, Uluozlu OD, Tuzen M, Soylak M (2008) Assessment of trace element levels in Rhododendron honeys of Black Sea Region, Turkey. J Hazard Mater 156:612–618

    CAS  Article  Google Scholar 

  35. Stecka H, Jedryczko D, Welna M, Pohl P (2014) Determination of traces of copper and zinc in honeys by the solid phase extraction pre-concentration followed by the flame atomic absorption spectrometry detection. Environ Monit Assess 186:6145–6155

    CAS  Article  Google Scholar 

  36. Svečnjak L, Baranović G, Vinceković M, Prđun S, Bubalo D, Tlak Gajger I (2015) An approach for routine analytical detection of beeswax adulteration using FTIR-ATR spectroscopy. J Apicult Sci 59:37–49

    Article  Google Scholar 

  37. Tlak Gajger I, Kosanović M, Bilandžić N, Sedak M, Čalopek B (2016) Variations in lead, cadmium, arsenic, and mercury concentrations during honeybee wax processing using casting technology. Arh Hig Rada Toksikol 67:223–228. https://doi.org/10.1515/aiht-2016-67-2780

    CAS  Article  Google Scholar 

  38. Tulloch AP (1980) Beeswax—composition and analysis. Bee World 61:47–62

    CAS  Article  Google Scholar 

  39. Van Der Steen JJM, de Kraker J, Grotenhuis T (2012) Spatial and temporal variation of metal concentrations in adult honeybees (Apis mellifera L.). Environ Monit Asses 184:4119–4126. https://doi.org/10.1007/s10661-011-2248-7

    CAS  Article  Google Scholar 

  40. Van der Steen JJM, Cornelissen B, Blacquière T, Pijnenburg JEML, Severijnen M (2016) Think regionally, act locally: metals in honeybee workers in the Netherlands (surveillance study 2008). Environ Monit Asses. https://doi.org/10.1007/s10661-016-5451-8

    Article  Google Scholar 

  41. Zaric NM, Ilijevic K, Stanisavljevic LJ, Grzetic (2016) Metal concentrations around thermal power plants, rural and urban areas using honeybees (Apis mellifera L.) as bioindicators. Int J Environ Sci Technol 13:413. https://doi.org/10.1007/s13762-015-0895-x

    CAS  Article  Google Scholar 

  42. Zaric NM, Deljanin IV, Ilijevic K, Stanisavljevic LJ, Ristic M, Grzetic I (2018a) Assessment of spatial and temporal variations in trace element concentrations using honeybees (Apis mellifera) as bioindicators. PeerJ 6:e5197

    Article  Google Scholar 

  43. Zaric NM, Deljanin IV, Ilijevic K, Stanisavljevic LJ, Ristic M, Grzetic I (2018b) Honeybees as sentinels of lead pollution: spatio-temporal variations and source appointment using stable isotopes and Kohonen self-organizing maps. Sci Total Environ 642:56–62

    CAS  Article  Google Scholar 

  44. Zhelyazkova H (2012) Honeybees—bioindicators for environmental quality. Bulg J Agric Sci 18:435–442

    Google Scholar 

  45. Zhou X, Taylor MP, Davies PJ, Prasad S (2018) Identifying sources of environmental contamination in European honeybees (Apis mellifera) using trace elements and lead isotopic compositions. Environ Sci Technol 52:991–1001. https://doi.org/10.1021/acs.est.7b04084

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ivana Tlak Gajger.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gajger, I.T., Kosanović, M., Oreščanin, V. et al. Mineral Content in Honeybee Wax Combs as a Measurement of the Impact of Environmental Factors. Bull Environ Contam Toxicol 103, 697–703 (2019). https://doi.org/10.1007/s00128-019-02713-y

Download citation

Keywords

  • Honeybee combs
  • Mineral content
  • Metal contamination
  • Environmental pollution
  • Beekeeping practice