Skip to main content

Variable Background Flow on Aquatic Toxicant Exposure Alters Foraging Patterns on Crayfish

Abstract

Climate change is expected to alter hydrological cycles on global and regional scales, impacting groundwater and surface water inputs to stream habitats. In the midwestern United States, the volume and frequency of inputs are expected to become increasingly variable. This region has a high incidence of agriculture, creating enormous potential for transport of pesticides and herbicides into aquatic ecosystems. Metolachlor, an herbicide for corn and soybean crops, has been demonstrated to contaminate surface water and groundwater in the region. This study examines the impact of variable flow conditions on the toxicity of environmentally relevant concentrations of metolachlor in a macroinvertebrate found in midwestern streams, the rusty crayfish (Faxonius rusticus). Changes in crayfish foraging behavior were analyzed using a Mixed Model ANCOVA. Under toxicant exposure, crayfish significantly increased their consumption of macrophytes, but only under the variable flow regime. Thus, the increased variability in toxicant exposure impacted crayfish foraging behavior more than other flow regimes. This significant interaction between flow regime and metolachlor exposure suggests that the greater variability in toxicant inputs to streams may lead to more severe changes in behavior for exposed organisms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Amiard-Triquet C, Amiard JC, Mouneyrac C (2015) Aquatic ecotoxicology: advancing tools for dealing with emerging risks. Academic Press, Cambridge

    Google Scholar 

  2. Ashauer R, Boxall A, Brown C (2006) Predicting effects on aquatic organisms from fluctuating or pulsed exposure to pesticides. Environ Toxicol Chem 25:1899–1912. https://doi.org/10.1897/05-393R.1

    CAS  Article  Google Scholar 

  3. Atema J (1996) Eddy chemotaxis and odor landscapes: exploration of nature with animal sensors. Biol Bull 191(1):129–138. https://doi.org/10.2307/1543074

    CAS  Article  Google Scholar 

  4. Bates D, Maechler M, Bolker B, Walker S, Christensen RHB, Singmann H, Bin D. Grothendicck G, Green P (2015) Package ‘lme4’. Convergence 12(1). https://github.com/lme4/lme4/ http://lme4.r-forge.r-project.org/

  5. Bear J, Cheng AHD (2010) Modeling groundwater flow and contaminant transport, vol 23. Springer, Berlin

    Book  Google Scholar 

  6. Cook ME, Moore PA (2008) The effects of the herbicide metolachlor on agonistic behavior in the crayfish, Orconectes rusticus. Arch Environ Contam Toxicol 55(1):94–102. https://doi.org/10.1007/s00244-007-9088-z

    CAS  Article  Google Scholar 

  7. Denny MW (1993) Air and water: the biology and physics of life’s media. Princeton University Press, Princeton

    Google Scholar 

  8. Edwards DD, Moore PA (2014) Real exposure: field measurement of chemical plumes in headwater streams. Arch Environ Contam Toxicol 67:413–425. https://doi.org/10.1007/s00244-014-0055-1

    CAS  Article  Google Scholar 

  9. Fero K, Simon JL, Jourdie V, Moore PA (2007) Consequences of social dominance on crayfish resource use. Behaviour 144:61–82

    Article  Google Scholar 

  10. Frey JW (2001) Occurrence, distribution, and loads of selected pesticides in streams in the Lake Erie-Lake St. Clair Basin, 1996–1998 US Geological Survey Report No. 2000-4169, pp 1–69. https://doi.org/10.3133/wri004169

  11. Gordon AK, Mantel SK, Muller NW (2012) Review of toxicological effects caused by episodic stressor exposure. Environ Toxicol Chem 31:1169–1174. https://doi.org/10.1002/etc.1781

    CAS  Article  Google Scholar 

  12. Grannemann NG, Hunt RJ, Nicholas JR, Reilly TE, Winter TC (2000) The importance of ground water in the Great Lakes region US Geological Survey Report No. 2000-4008. https://water.usgs.gov/ogw/pubs/WRI004008/WRIR_00-4008

  13. Harrigan KM, Moore PA (2017) Scaling to the organism: an innovative model of dynamic exposure hotspots in stream systems. Arch Environ Contam Toxicol. https://doi.org/10.1007/s00244-017-0444-3

    Article  Google Scholar 

  14. Hill AM, Lodge DM (1999) Replacement of resident crayfishes by an exotic crayfish: the roles of competition and predation. Ecol Soc Am 9:678–690. https://doi.org/10.1890/10510761(1999)009%5b0678:RORCBA%5d2.0.CO;2

    Article  Google Scholar 

  15. Kalkhoff SJ, Lee KE, Porter SD, Terrio PJ, Thurman EM (2003) Herbicides and herbicide degradation products in upper Midwest agricultural streams during August base-flow conditions. J Environ Qual 32(3):1025–1035. https://doi.org/10.2134/jeq2003.1025

    CAS  Article  Google Scholar 

  16. Kreuzinger N, Clara M, Strenn B, Vogel B (2004) Investigation on the behaviour of selected pharmaceuticals in the groundwater after infiltration of treated wastewater. Water Sci Technol 50:221–228. https://doi.org/10.2166/wst.2004.0130

    CAS  Article  Google Scholar 

  17. Leng G, Huang M, Voisin N, Zhang X, Asrar GR, Leung LR (2016) Emergence of new hydrologic regimes of surface water resources in the conterminous United States under future warming. Environ Res Lett 11(11):114003. https://doi.org/10.1088/1748-9326/11/11/114003/pdf

    Article  Google Scholar 

  18. Lenth R (2019) emmeans: estimated marginal means, aka least-squares means. R package version 1.3.4. https://CRAN.R-project.org/package=emmeans

  19. Loecke TD, Burgin AJ, Riveros-Iregui DA, Ward AS, Thomas SA, Davis CA, Clair MAS (2017) Weather whiplash in agricultural regions drives deterioration of water quality. Biogeochemistry 133(1):7–15. https://doi.org/10.1007/s10533-017-0315-z

    CAS  Article  Google Scholar 

  20. Ludington TS, Moore PA (2017) The degree of impairment of foraging in crayfish (Orconectes virilis) due to insecticide exposure is dependent upon turbulence dispersion. Arch Environ Contam Toxicol 72:281–293. https://doi.org/10.1007/s00244-016-0341-1

    CAS  Article  Google Scholar 

  21. Milne I, Seager J, Mallett M (2000) Effects of short-term pulsed ammonia exposure on fish. Environ Toxicol Chem 19:2929–2936. https://doi.org/10.1002/etc.5620191213

    CAS  Article  Google Scholar 

  22. Moore P, Crimaldi J (2004) Odor landscapes and animal behavior: tracking odor plumes in different physical worlds. J Mar Syst 49:55–64. https://doi.org/10.1016/j.jmarsys.2003.05.005

    Article  Google Scholar 

  23. Moore PA, Zimmer-Faust RK, Bement SL, Weissburg MJ, Parrish JM, Gerhardt GA (1992) Measurement of microscale patchiness in a turbulent aquatic odor plume using a semiconductor-based microprobe. Biol Bull 183:138–142. https://doi.org/10.2307/1542414

    CAS  Article  Google Scholar 

  24. Moore PA, Weissburg MJ, Parrish JM, Zimmer-Faust RK, Gerhardt GA (1994) Spatial distribution of odors in simulated benthic boundary layer flows. J Chem Ecol 20:255–279. https://doi.org/10.1007/BF02064435

    CAS  Article  Google Scholar 

  25. Neal AE, Moore PA (2017) Mimicking natural systems: changes in behavior as a result of dynamic exposure to naproxen. Ecotoxicol Environ Saf 135:347–357. https://doi.org/10.1016/j.ecoenv.2016.10.015

    CAS  Article  Google Scholar 

  26. Nearing MA, Pruski FF, O’neal MR (2004) Expected climate change impacts on soil erosion rates: a review. J Soil Water Conserv 59(1):43–50

    Google Scholar 

  27. Nikora V (2010) Hydrodynamics of aquatic ecosystems: an interface between ecology, biomechanics and environmental fluid mechanics. River Res Appl 26:367–384. https://doi.org/10.1002/rra.1291

    Article  Google Scholar 

  28. Patz JA, Vavrus SJ, Uejio CK, McLellan SL (2008) Climate change and waterborne disease risk in the Great Lakes region of the US. Am J Prev Med 35(5):451–458. https://doi.org/10.1016/j.amepre.2008.08.026

    Article  Google Scholar 

  29. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  30. Reichenberger S, Bach M, Skitschak A, Frede HG (2007) Mitigation strategies to reduce pesticide inputs into ground and surface water and their effectiveness; a review. Sci Total Environ 384:1–35. https://doi.org/10.1016/j.scitotenv.2007.04.046

    CAS  Article  Google Scholar 

  31. Rivard L (2003) Environmental fate of metolachlor. Chemistry 51218(45):42

    Google Scholar 

  32. Schulz R, Liess M (2000) Toxicity of fenvalerate to caddisfly larvae: chronic effects of 1-vs 10-h pulse-exposure with constant doses. Chemosphere 41:1511–1517. https://doi.org/10.1016/S0045-6535(00)00107-7

    CAS  Article  Google Scholar 

  33. Sedláček J, Knutti R (2014) Half of the world’s population experience robust changes in the water cycle for a 2 C warmer world. Environ Res Lett 9(4):044008. https://doi.org/10.1088/1748-9326/9/4/044008

    Article  Google Scholar 

  34. Steele AN, Belanger RM, Moore PA (2018) Exposure through runoff and ground water contamination differentially impact behavior and physiology of crustaceans in fluvial systems. Arch Environ Contam Toxicol 75:436–448. https://doi.org/10.1007/s00244-018-0542-x

    CAS  Article  Google Scholar 

  35. Vogel S (1994) Life in moving fluids. The physical biology of flow, 2nd edn. Princeton University Press, Princeton

    Google Scholar 

  36. Wang Q, Zhang Q, Wu Y, Wang XC (2017) Physicochemical conditions and properties of particles in urban runoff and rivers: implications for runoff pollution. Chemosphere 173:318–325. https://doi.org/10.1016/j.chemosphere.2017.01.066

    CAS  Article  Google Scholar 

  37. Wolf MC, Moore PA (2002) Effects of the herbicide metolachlor on the perception of chemical stimuli by Orconectes rusticus. J North Am Benthol Soc 21(3):457–467. https://doi.org/10.2307/1468482

    Article  Google Scholar 

  38. Wood TC, Kelley RE, Moore PA (2018) Feeding in fear: indirect effects of predatory fish on macrophyte communities mediated by altered crayfish foraging behavior. Freshw Biol 63(12):1523–1533. https://doi.org/10.1111/fwb.13181

    Article  Google Scholar 

  39. Yee E, Biltoft CA (2004) Concentration fluctuation measurements in a plume dispersing through a regular array of obstacles. Bound Layer Meteorol 111:363–415. https://doi.org/10.1023/B:BOUN.0000016496.83909.ee

    Article  Google Scholar 

  40. Yokley RA, Mayer LC, Huang SB, Vargo JD (2002) Analytical method for the determination of metolachlor, acetochlor, alachlor, dimethenamid, and their corresponding ethanesulfonic and oxanillic acid degradates in water using SPE and LC/ESI-MS/MS. Anal Chem 74(15):3754–3759. https://doi.org/10.1021/ac020134q

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the UMBS REU program (FA), the Marian P. and David M. Gates graduate student endowment fund (KKW) and the Fulbright Program (PAM) for funding.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paul A. Moore.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alacantara, F., Weighman, K.K. & Moore, P.A. Variable Background Flow on Aquatic Toxicant Exposure Alters Foraging Patterns on Crayfish. Bull Environ Contam Toxicol 103, 663–669 (2019). https://doi.org/10.1007/s00128-019-02707-w

Download citation

Keywords

  • Dynamic exposure
  • Flow
  • Toxicity
  • Climate change
  • Runoff
  • Groundwater