Skip to main content

Effects of Different Microplastic Types and Surfactant-Microplastic Mixtures Under Fasting and Feeding Conditions: A Case Study on Daphnia magna

Abstract

This study evaluates the mortality and immobilization on Daphnia magna after 24–96 h of exposure to microplastic dispersions (PP, PE, PVC, PVC/PE), and to microplastic + surfactant solutions both under fasting and feeding conditions. The tested microplastics were analysed with μFT-IR to determine their chemical composition, purity, and dimensions. The results show that: (i) exposure under fasting conditions produces acceptable results on negative controls no later than 24 h; (ii) the dispersion of microplastics forms homo-agglomerates that are able to affect animals’ motility and cause mortality and immobilization; (iii) different types of tested microplastic produce different effects on endpoints (the most toxic is PVC + surfactant); (iv) in all cases, the effects were reduced under feeding conditions (i.e. 4 times reduction of PE toxicity); (v) effects of surfactant on observed toxicity are microplastic-type dependent; (vi) the age of the animal affected the mortality and immobilization responses after exposure under both fasting and feeding conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Baird DJ, Barber I, Bradley M, Calow P, Soares AMVM (1989) The Daphnia bioassay: a critique. Hydrobiologia 188:403. https://doi.org/10.1007/BF00027806

    Article  Google Scholar 

  2. Bakir A, Rowland SJ, Thompson RC (2014) Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions. Environ Pollut 185:16–23

    Article  CAS  Google Scholar 

  3. Baumann J, Sakka Y, Bertrand C, Köser J, Filser J (2014) Adaptation of the Daphnia sp. acute toxicity test: miniaturization and prolongation for the testing of nanomaterials. Environ Sci Pollut Res 21(3):2201–2213. https://doi.org/10.1007/s11356-013-2094-y.

    Article  CAS  Google Scholar 

  4. Browne MA, Galloway T, Thompson R (2007) Microplastic—an emerging contaminant of potential concern? Integr Environ Assess Manag 3:559–561. https://doi.org/10.1002/ieam.5630030412

    Article  Google Scholar 

  5. Browne MA, Crump P, Niven SJ, Teuten E, Galloway T, Thompson R (2011) Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ Sci Technol 45(21):9175–9179. https://doi.org/10.1021/es201811s

    Article  CAS  Google Scholar 

  6. Cole M, Lindeque P, Fileman E, Halsband C, Goodhead R, Moger J, Galloway T (2013) Microplastic ingestion by zooplankton. Environ Sci Technol 47:6646–6655. https://doi.org/10.1021/es400663f

    Article  CAS  Google Scholar 

  7. Duis K, Coors A (2016) Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environ Sci Eur 28:2. https://doi.org/10.1186/s12302-015-0069-y

    Article  CAS  Google Scholar 

  8. Ebert D (2005) Ecology, epidemiology, and evolution of parasitism in Daphnia. National Library of Medicine (US) and National Center for Biotechnology Information (US), Bethesda. ISBN-10: 1-932811-06-0.

  9. Fischer EH, Paglialonga L, Czech E, Taminga M (2016) Microplastic pollution in lakes and lake shoreline sediments—a case study on Lake Bolsena and Lake Chiusi (central Italy). Environ Pollut 213:648–657. https://doi.org/10.1016/j.envpol.2016.03.012

    Article  CAS  Google Scholar 

  10. Free CM, Jensen OP, Mason SA, Eriksen M, Williamson NJ, Boldgiv B (2014) High-levels of microplastic pollution in a large, remote, mountain lake. Mar Pollut Bull 85(1):156–163. https://doi.org/10.1016/j.marpolbul.2014.06.001

    Article  CAS  Google Scholar 

  11. Frydkjær CK, Iversen N, Roslev P (2017) Daphnia magna: effects of regular and irregular shaped plastic and sorbed phenanthrene. Bull Environ Contam Toxicol 99:655–661. https://doi.org/10.1007/s00128-017-2186-3

    Article  CAS  Google Scholar 

  12. Galloway TS, Lewis CN (2016) Marine microplastics spell big problems for future generations. PNAS 113:2331–2333. https://doi.org/10.1073/pnas.1600715113

    Article  CAS  Google Scholar 

  13. Imhof HK, Rusek J, Thiel M, Wolinska J, Laforsch C (2017) Do microplastic particles affect Daphnia magna at the morphological, life history and molecular level? PLoS ONE 12(11):e0187590. https://doi.org/10.1371/journal.pone.0187590

    Article  CAS  Google Scholar 

  14. Jemec A, Horvat P, Kunej U, Bele M, Kržan A (2016) Uptake and effects of microplastic textile fibers on freshwater crustacean Daphnia magna. Environ Pollut 219(2016):201–209. https://doi.org/10.1016/j.envpol.2016.10.037

    Article  CAS  Google Scholar 

  15. Kim D, Chae Y, An Y-J (2017) Mixture toxicity of nickel and microplastics with different functional groups on Daphnia§ magna. Environ Sci Technol 51:12852–12858. https://doi.org/10.1021/acs.est.7b03732

    Article  CAS  Google Scholar 

  16. Lassen C, Hansen SF, Magnusson K, Hartmann NB, Rehne Jensen P, Nielsen TG, Brinch A (2015) Microplastics—occurrence, effects and sources of releases to the environment in Denmark. The Danish Environmental Protection Agency, Environmental Project No. 1793

  17. Lechuga M, Fernández-Serrano M, Jurado E, Núñez-Olea J, Ríos F (2016) Acute toxicity of anionic and non-ionic surfactants to aquatic organisms. Ecotoxicol Environ Saf 125:1–8. https://doi.org/10.1016/j.ecoenv.2015.11.027

    Article  CAS  Google Scholar 

  18. Murphy F, Ewins C, Carbonnier F, Quinn B (2016) Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ Sci Technol 50(11):5800–5808. https://doi.org/10.1021/acs.est.5b05416

    Article  CAS  Google Scholar 

  19. Nørgaard LS, Roslev P (2016) Effects of ammonia and density on filtering of commensal and pathogenic Escherichia coli by the cladoceran Daphnia magna. Bull Environ Contam Toxicol 6:848–854. https://doi.org/10.1007/s00128-016-1963-8

    Article  CAS  Google Scholar 

  20. OECD (2004) OECD guidelines for the testing of chemicals. Test no. 202 “Daphnia” sp., Acute Immobilisation Test. April 1–12.

  21. Pavan A, Frassine R (2005) Tubazioni in polietilene per il trasporto di acqua. Manuale per la progettazione, la posa e la gestione sicura delle reti idriche. Springer, Mailand. https://doi.org/10.1007/b138839.

    Book  Google Scholar 

  22. Rehse S, Kloas W, Zarfl C (2016) Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of Daphnia magna. Chemosphere 153:91–99. https://doi.org/10.1016/j.chemosphere.2016.02.133

    Article  CAS  Google Scholar 

  23. Renzi M, Giovani A, Focardi SE (2012) Water pollution by surfactants: fluctuations due to tourism exploitation in a lagoon ecosystem. J Environ Prot 3:1004–1009

    Article  CAS  Google Scholar 

  24. Renzi M, Guerranti C, Blašković A (2018a) Microplastic contents from maricultured and natural mussels. Mar Pollut Bull 131:248–251

    Article  CAS  Google Scholar 

  25. Renzi M, Blašković A, Bernardi G, Russo GF (2018b) Plastic litter transfer from sediments towards marine trophic webs: a case study on holothurians. Mar Pollut Bull 135:376–385

    Article  CAS  Google Scholar 

  26. Rosenkranz P, Qasim C, Stone V, Fernandes TF (2009) A comparison of nanoparticle and fine particle uptake by Daphnia magna. EnvironToxicol Chem 28:2142–2149. https://doi.org/10.1897/08-559.1

    Article  CAS  Google Scholar 

  27. Teuten EL, Rowland SJ, Galloway TS, Thompson RC (2007) Potential for plastics to transport hydrophobic contaminants. Environ Sci Technol 41(22):7759–7764. https://doi.org/10.1021/es071737s

    Article  CAS  Google Scholar 

  28. Wright SL, Thompson RC, Galloway TS (2013) The physical impacts of microplastics on marine organisms: a review. Environ Pollut 178:483–492. https://doi.org/10.1016/j.envpol.2013.02.031

    Article  CAS  Google Scholar 

  29. Wypych G (2015) PVC properties. In: PVC formulary (2 nd edn), pp 5–44. https://doi.org/10.1016/B978-1-895198-84-3.50004-1

  30. Zhang Z, Qu C, Zheng T, Lai Y, Li J (2013) Effect of triton X-100 as dispersant on carbon black for LiFePO4 cathode. Int J Electrochem Sci 8:6722–6733

    CAS  Google Scholar 

  31. Ziccardi LM, Edgington A, Hentz K, Kulacki K, Driscoll SK (2016) Microplastics as vectors for bioaccumulation of hydrophobic organic chemicals in the marine environment: a state-of-the-science review. Environ Toxicol Chem 35:1667–1676. https://doi.org/10.1002/etc.3461

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Monia Renzi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 57 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Renzi, M., Grazioli, E. & Blašković, A. Effects of Different Microplastic Types and Surfactant-Microplastic Mixtures Under Fasting and Feeding Conditions: A Case Study on Daphnia magna. Bull Environ Contam Toxicol 103, 367–373 (2019). https://doi.org/10.1007/s00128-019-02678-y

Download citation

Keywords

  • Microplastics
  • Daphnia magna
  • Surfactants
  • Fasting and feeding conditions
  • Freshwater environments