Skip to main content
Log in

Heavy Metal Atmospheric Deposition Study in Moscow Region, Russia

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The air quality in north-eastern part of Moscow region was evaluated by trace metals atmospheric deposition using moss Pleurozium schreberi as bioindicator. Thirty six elements were determined in analyzed samples by Neutron activation analysis and Atomic absorption spectrometry. Principal component analysis was used to identify and characterize different pollution sources. Maps showing the geographical distribution of the factor scores were built using ArcGis software. Median values of the elements studied were compared with data obtained for other regions in Russia. The present survey showed that industrial activity, thermal power plants and transport still have the largest anthropogenic impact on air pollution in studied region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aničić M, Frontasyeva MV, Tomašević M et al (2007) Assessment of atmospheric deposition of heavy metals and other elements in belgrade using the moss biomonitoring technique and neutron activation analysis. Environ Monit Assess 129:207–219

    Article  CAS  Google Scholar 

  • Anonymous (2015). Informational bulletin “About the state of natural resources on the environment of the Moscow region in 2015”. The Ministry of Ecology and Natural Resources Use of the Moscow Region. Krasnogorsk 2016 (in Russian)

  • Barandovski L, Frontasyeva MV, Stafilov T et al (2015) Multi-element atmospheric deposition in Macedonia studied by the moss biomonitoring technique. Environ Sci Pollut Res 22:16077–16097. https://doi.org/10.1007/s11356-015-4787-x

    Article  CAS  Google Scholar 

  • CLRTAP (2015) Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends. UNECE Convention on Long-range Transboundary Air Pollution. https://icpvegetation.ceh.ac.uk. Accessed 26 June 2016

  • Dunaev AM, Rumyancev IV, Agapova IB et al (2018) Fiziko-himicheskii I biologicheskii monitoring v centralnoi Rossii: issledovanie kachestva atmosphernogo vozduha I pochvu na territorii g. Rodniki Izvestiya vyzov Himiya I him tehnologia. 61(8):96–104. https://doi.org/10.6060/ivkkt20186108.5721

    Article  Google Scholar 

  • Ermakova EV, Frontasyeva MV, Pavlov SS et al (2004) Air pollution studies in Central Russia (Tver and Yaroslavl Regions) using the Moss biomonitoring technique and neutron activation analysis. J Atmos Chem 49:549–561. https://doi.org/10.1007/s10874-004-1265-0

    Article  CAS  Google Scholar 

  • Ermakova EV, Frontasyeva MV, Steinnes E (2004) The study of the atmospheric deposition of heavy metals and other elements in the Tula region using the method of moss-biomonitors. Environ Chem 13:167–180

    CAS  Google Scholar 

  • Fernández JA, Carballeira A (2001) Evaluation of contamination, by different elements, in terrestrial mosses. Arch Environ Contam Toxicol 40:461–468. https://doi.org/10.1007/s002440010198

    Article  CAS  Google Scholar 

  • Frontasyeva MV (2011) Neutron activation analysis for the life sciences. Phys Part Nucl 42:332–378. https://doi.org/10.1134/S1063779611020043

    Article  CAS  Google Scholar 

  • Gorelova SV, Frontasyeva MV, Volkova EM et al (2016) Trace element accumulating ability of different moss species used to study atmospheric deposition of heavy metals in Central Russia: Tula Region case study. Int J Biol Biomedic Eng 10:271–285

    Google Scholar 

  • Harmens H, Norris DA, Steinnes E et al (2010) Mosses as biomonitors of atmospheric heavy metal deposition: spatial and temporal trends in Europe. Environ Pollut 158:3144–3156. https://doi.org/10.1016/j.envpol.2010.06.039

    Article  CAS  Google Scholar 

  • Harmens H, Norris DA, Sharps K et al (2015) Heavy metal and nitrogen concentrations in mosses are declining across Europe whilst some “hotspots” remain in 2010. Environ Pollut 200:93–104. https://doi.org/10.1016/j.envpol.2015.01.036

    Article  CAS  Google Scholar 

  • Kharin VN, Fedorets NG, Shil'tsova GV et al (2001) Geographic trends in the accumulation of heavy metals in mosses and forest litters in Karelia. Russ J Ecol 32:138–141. https://doi.org/10.1023/A:1009553018591

    Article  CAS  Google Scholar 

  • Koroleva YuV (2010) Bioindication atmospheric deposition of heavy metals in the Kaliningrad region. Kant Russ State Univ Bull Russ State Kant Univ 7:39–44

    Google Scholar 

  • Korzekwa S, Pankratova YS, Frontasyeva MV (2007) Air pollution studies in Opole region, Poland, using the moss biomonitoring technique and neutron activation analysis. Proc ECOpole 1:1/2

    Google Scholar 

  • Kravchenko J, Darrah TH, Miller RK et al (2014) A review of the health impacts of barium from natural and anthropogenic exposure. Environ Geochem Health 36:797–814

    Article  CAS  Google Scholar 

  • Maxhuni A, Lazo P, Kane S et al (2016) First survey of atmospheric heavy metal deposition in Kosovo using moss biomonitoring. Environ Sci Pollut Res 23:744–755. https://doi.org/10.1007/s11356-015-5257-1

    Article  CAS  Google Scholar 

  • Moreno T, Querol X, Alastuey A et al (2010) Variations in vanadium, nickel and lanthanoid element concentrations in urban air. Sci Total Environ 408(20):4569–4579

    Article  CAS  Google Scholar 

  • Pavlov SS, Dmitriev AYu, Frontasyeva MV (2016) Automation system for neutron activation analysis at the reactor IBR-2, Frank Laboratory of neutron physics, Joint Institute for Nuclear Research, Dubna, Russia. J Radioanal Nucl Chem 309:27–38. https://doi.org/10.1007/s10967-016-4864-8

    Article  CAS  Google Scholar 

  • Plattes M, Bertrand A, Schmitt B et al (2007) Removal of tungsten oxyanions from industrial wastewater by precipitation, coagulation and flocculation processes. J Hazard Mater 148:613–615

    Article  CAS  Google Scholar 

  • Pomme S, Hardeman F, Robouch P, (1997) Neutron activation analysis with k0-standardisation :general formalism and procedure. Nuclear Spectrometry Radiation Protection Department SCK CEN, 1997

  • Qarri F, Lazo P, Stafilov T et al (2014) Multi-elements atmospheric deposition study in Albania. Environ Sci Pollut Res 21:2506–2518. https://doi.org/10.1007/s11356-013-2091-1

    Article  CAS  Google Scholar 

  • Qarri F, Lazo P, Bekteshi L et al (2015) The effect of sampling scheme in the survey of atmospheric deposition of heavy metals in Albania by using moss biomonitoring. Environ Sci Pollut Res 22:2258–2271. https://doi.org/10.1007/s11356-014-3417-3

    Article  CAS  Google Scholar 

  • Reimann C, Halleraker JH, Kashulina G, Bogatyrev I (1999) Comparison of plant and precipitation chemistry in catchments with different levels of pollution in Kola Peninsula, Russia. Sci Total Environ 243:169–191

    Article  Google Scholar 

  • Rühling Å, Tyler G (1968) An ecological approach to the lead problem. Bot Not 121(3):321–342

    Google Scholar 

  • Rühling A, Rasmusen L, Pilegaard K et al (1987) Survey of atmospheric heavy metal deposition in the Nordic countries in 1985 monitored by moss analysis. NORD 1987:21

    Google Scholar 

  • Rühling A, Berg T, Steinnes E (1998) Atmospheric heavy metal deposition in Europe 1995–1996. NORD, p. 1998.

  • Stafilov T, Šajn RT, Barandovski L et al (2018) Moss biomonitoring of atmospheric deposition study of minor and trace elements in Macedonia. Air Qual Atmos Health 11:137–152. https://doi.org/10.1007/s11869-017-0529-1

    Article  CAS  Google Scholar 

  • Verbinnen B, Block C, Hannes D et al (2012) Removal of molybdate anions from water by adsorption on zeolite-supported magnetite. Water Environ Res 84(9):753–760

    Article  CAS  Google Scholar 

  • Vergel KN, Frontasyeva MV, Kamanina IZ, Pavlov SS (2009) Biomonitoring atmosphernukh vupadenii tyazeluh mettalov na severo-vostoke Moskovskoi oblasti s pomosh’yu metoda mhov-biomonitorov. J Ecol Urban Territ 3:88–95 (in Russian)

    Google Scholar 

  • Vergel K, Goryainova Z, Vikhrova I et al (2014) Moss biomonitoring and employment of the GIS technology within the framework of the assessment of air pollution by industrial enterprises in the Tikhvin district of the Leningrad region. J Ecol Urban Territ (in Russian)

  • Zinicovscaia I, Hramco C, Duliu OG et al (2017) Air pollution study in the Republic of Moldova using moss biomonitoring technique. Bull Environ Contam Toxicol 98(2):262–269. https://doi.org/10.1007/s00128-016-1989-y

    Article  CAS  Google Scholar 

  • Zinicovscaia II, Aničić Urošević M et al (2018) Active moss biomonitoring of trace elements air pollution in Chisinau, Republic of Moldova. Ecol Chem Eng S 25(3):361–372. https://doi.org/10.1515/eces-2018-0024

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inga Zinicovscaia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vergel, K., Zinicovscaia, I., Yushin, N. et al. Heavy Metal Atmospheric Deposition Study in Moscow Region, Russia. Bull Environ Contam Toxicol 103, 435–440 (2019). https://doi.org/10.1007/s00128-019-02672-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-019-02672-4

Keywords

Navigation