Skip to main content

Effects and Removal of the Antibiotic Sulfadiazine by Eichhornia crassipes: Potential Use for Phytoremediation

Abstract

The antibiotic sulfadiazine (SDZ) is a challenging threat to the health of aquatic organisms, as it frequently occurs in aquatic ecosystems. Tolerance mechanisms and accumulation of SDZ in a floating macrophyte (Eichhornia crassipes) under hydroponic conditions were investigated in this study to provide more insight into the SDZ removal process. Results show that the presence of 1 mg L−1 SDZ decreased the quickest and ranged from 669.45 to 165.34 μg L−1 from days 5 to 25. Exposing E. crassipes to SDZ ( < 1 mg L−1) maintained stable leaf photosynthetic efficiency. The overall increase in superoxide dismutase and peroxidase activities with SDZ treatments indicated that leaves were resistant. SDZ was absorbed by E. crassipes, following the sequence of root > aerial parts under all treatments. These findings suggest that E. crassipes has the ability to phytoremediation SDZ contaminated water.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aristilde L, Melis A, Sposito G (2010) Inhibition of photosynthesis by a fluoroquinolone antibiotic. Environ Sci Technol 44:1444–1450

    Article  CAS  Google Scholar 

  2. Azanu D, Mortey C, Darko G, Weisser JJ, Styrishave B, Abaidoo RC (2016) Uptake of antibiotics from irrigation water by plants. Chemosphere 157:107–114

    Article  CAS  Google Scholar 

  3. Babic S, Perisa M, Skoric I (2013) Photolytic degradation of norfloxacin, enrofloxacin and ciprofloxacin in various aqueous media. Chemosphere 91:1635–1642

    Article  CAS  Google Scholar 

  4. Chen J, Xu H, Sun Y, Huang L, Zhang P, Zou C, Yu B, Zhu G, Zhao C (2016) Interspecific differences in growth response and tolerance to the antibiotic sulfadiazine in ten clonal wetland plants in South China. Sci Total Environ 543:197–205

    Article  CAS  Google Scholar 

  5. De Liguoro M, Poltronieri C, Capolongo F, Montesissa C (2007) Use of sulfadimethoxine in intensive calf farming: Evaluation of transfer to stable manure and soil. Chemosphere 68(4):671–676

    Article  CAS  Google Scholar 

  6. Dordio AV, Duarte C, Barreiros M, Carvalho AJ, Pinto AP, Costa CT (2009) Toxicity and removal efficiency of pharmaceutical metabolite clofibric acid by Typha spp.–potential use for phytoremediation? Bioresour Technol 100:1156–1161

    Article  CAS  Google Scholar 

  7. Du J, Zhao H, Liu S, Xie H, Wang Y, Chen J (2017) Antibiotics in the coastal water of the South Yellow Sea in China: occurrence, distribution and ecological risks. Sci Total Environ 595:521–527

    Article  CAS  Google Scholar 

  8. Durrieu C, Tran C, Chovelon JM, Barthet L, Chouteau C, Védrine C (2006) Algal biosensors for aquatic ecosystems monitoring. Eur Phys J Appl Phys 36:205–209

    Article  Google Scholar 

  9. Elmolla ES, Chaudhuri M (2010) Comparison of different advanced oxidation processes for treatment of antibiotic aqueous solution. Desalination 256:43–47

    Article  CAS  Google Scholar 

  10. Evans-Roberts KM, Mitchenall LA, Wall MK, Leroux J, Mylne JS, Maxwell A (2016) DNA Gyrase is the target for the quinolone drug ciprofloxacin in Arabidopsis thaliana. J Biol Chem 291:3136–3144

    Article  CAS  Google Scholar 

  11. Gujarathi NP, Haney BJ, Linden JC (2005) Phytoremediation potential of Myriophyllum aquaticum and Pistia stratiotes to modify antibiotic growth promoters, tetracycline, and oxytetracycline, in aqueous wastewater systems. Int J Phytoremediat 7:99–112

    Article  CAS  Google Scholar 

  12. Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004) Responses of three grass species to creosote during phytoremediation. Environ Pollut 130:453–463

    Article  CAS  Google Scholar 

  13. Johnson GN, Young AJ, Scholes JD, Horton P (1993) The dissipation of excess excitation energy in British plant species. Plant Cell Environ 16:673–679

    Article  CAS  Google Scholar 

  14. Kümmerer K (2009) Antibiotics in the aquatic environment – a review – part ii. Chemosphere 75(4):435–441

    Article  CAS  Google Scholar 

  15. Liu L, Liu Yh, Liu CX, Wang Z, Dong J, Zhu GF, Huang X (2013) Potential effect and accumulation of veterinary antibiotics in Phragmites australis under hydroponic conditions. Ecol Eng 53:138–143

    Article  Google Scholar 

  16. Malchi T, Maor Y, Tadmor G, Shenker M, Chefetz B (2014) Irrigation of root vegetables with treated wastewater: evaluating uptake of pharmaceuticals and the associated human health risks. Environ Sci Technol 48:9325–9333

    Article  CAS  Google Scholar 

  17. Michelini L, Meggio F, La Rocca N, Ferro S, Ghisi R (2012) Accumulation and effects of sulfadimethoxine in Salix fragilis L. plants: a preliminary study to phytoremediation purposes. Int J Phytoremediat 14:388–402

    Article  Google Scholar 

  18. Montavon P, Kukic KR, Bortlik K (2007) A simple method to measure effective catalase activities: optimization, validation, and application in green coffee. Anal Biochem 360:207–215

    Article  CAS  Google Scholar 

  19. Pan M, Wong CK, Chu LM (2014) Distribution of antibiotics in wastewater-irrigated soils and their accumulation in vegetable crops in the Pearl River Delta, southern China. J Agric Food Chem 62:11062–11069

    Article  CAS  Google Scholar 

  20. Rezania S, Ponraj M, Talaiekhozani A, Mohamad SE, Din MF, Taib SM, Sabbagh F, Sairan FM (2015) Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. J Environ Manage 163:125–133

    Article  CAS  Google Scholar 

  21. Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65(5):725–759

    Article  CAS  Google Scholar 

  22. Sharma V, Vinoth Kumar R, Pakshirajan K, Pugazhenthi G (2017) Integrated adsorption-membrane filtration process for antibiotic removal from aqueous solution. Powder Technol 321:259–269

    Article  CAS  Google Scholar 

  23. Song C, Li L, Zhang C, Qiu L, Fan L, Wu W, Meng S, Hu G, Chen J, Liu Y, Mao A (2017) Dietary risk ranking for residual antibiotics in cultured aquatic products around Tai Lake, China. Ecotoxicol Environ Saf 144:252–257

    Article  CAS  Google Scholar 

  24. Stackelberg PE, Gibs J, Furlong ET, Meyer MT, Zaugg SD, Lippincott RL (2007) Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds. Sci Total Environ 377(2–3):255–272

    Article  CAS  Google Scholar 

  25. Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organicd chemical contamination. Ecol Eng 18:674–658

    Article  Google Scholar 

  26. Thuy HTT, Nga LP, Loan TTC (2011) Antibiotic contaminants in coastal wetlands from Vietnamese shrimp farming. Environ Sci Pollut R 18(6):835–841

    Article  CAS  Google Scholar 

  27. Védrine C, Leclerc JC, Durrieu C, Tran-Minh C (2003) Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides. Biosens Bioelectron 18:457–463

    Article  CAS  Google Scholar 

  28. Wall MK, Mitchenall LA, Maxwell A (2004) Arabidopsis thaliana DNA gyrase is targeted to chloroplasts and mitochondria. Proc Natl Acad Sci USA 101:7821–7826

    Article  CAS  Google Scholar 

  29. Wim VC, Katelijne C, Marc VM, Dirk I, Luit S (1996) Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol 112:1703–1714

    Article  Google Scholar 

  30. Xia H, Ma X (2006) Phytoremediation of ethion by water hyacinth (Eichhornia crassipes) from water. Bioresour Technol 97:1050–1054

    Article  CAS  Google Scholar 

  31. Xian Q, Hu L, Chen H, Chang Z, Zou H (2010) Removal of nutrients and veterinary antibiotics from swine wastewater by a constructed macrophyte floating bed system. J Environ Manage 91:2657–2661

    Article  CAS  Google Scholar 

  32. Xu J, Zhang J, Xie H, Li C, Bao N, Zhang C, Shi Q (2010) Physiological responses of Phragmites australis to wastewater with different chemical oxygen demands. Ecol Eng 36:1341–1347

    Article  Google Scholar 

  33. Xu J, Zhang Y, Zhou C, Guo C, Wang D, Du P, Luo Y, Wan J, Meng W (2014) Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China. Sci Total Environ 497–498:267–273

    Article  CAS  Google Scholar 

  34. Yan C, Yang Y, Zhou J, Liu M, Nie M, Shi H (2013) Antibiotics in the surface water of the Yangtze estuary: occurrence, distribution and risk assessment. Environ Pollut 175(8):22–29

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Major Science and Technology Program for Water Pollution Control and Treatment (Number 2017ZX07203-003).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Limin Zhang or Guoxiang Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Chen, Y., Xu, X. et al. Effects and Removal of the Antibiotic Sulfadiazine by Eichhornia crassipes: Potential Use for Phytoremediation. Bull Environ Contam Toxicol 103, 342–347 (2019). https://doi.org/10.1007/s00128-019-02656-4

Download citation

Keywords

  • Accumulation
  • Tolerance
  • Antioxidant enzyme
  • Floating macrophyte
  • Photosynthetic