Skip to main content

Strontium Uptake and Effect in Lettuce and Radish Cultivated Under Hydroponic Conditions

Abstract

The accumulation of strontium (Sr) in lettuce and radish under 0 (control), 0.5, 1, 2.5, 5, and 10 mM Sr treatments in hydroponic solution at 16, 23 and 30 days and the effects of Sr stress on six nutrient elements in plants were investigated. The results showed that Sr concentrations in plant aerial and underground parts increased in low-Sr treatments (0.5, 1 and 2.5 mM) and fluctuated in high-Sr treatments (5 and 10 mM) throughout the three sampling periods. Sr concentrations were higher in roots than in leaves, reaching 108.8 ± 14.7 and 134.1 ± 1.2 mg/g in lettuce and radish roots, respectively, after 10 mM Sr treatment. Translocation factor (TF) values (ratio of the Sr concentrations in aerial parts to that in roots) were inversely related to the Sr content in the hydroponic solution, and reached 1.45 ± 0.17 to 0.15 ± 0.03 and 1.06 ± 0.20 to 0.12 ± 0.004 for lettuce and radish. The variation in chlorophyll content was consistent with that in plant biomass.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Al Attar L, Al-Oudat M, Safia B, Ghani BA (2015) Transfer factor of 90Sr and 137Cs to lettuce and winter wheat at different growth stage applications. J Environ Radioactiv 150:104–110

    Article  CAS  Google Scholar 

  2. Bidar G, Garçon G, Pruvot C, Dewaele D, Cazier F, Douay F, Shirali P (2007) Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: plant metal concentration and phytotoxicity. Environ Pollut 147:546–553

    Article  CAS  Google Scholar 

  3. Broadley MR, White PJ (2012) Some elements are more equal than others: soil-to-plant transfer of radiocaesium and radiostrontium, revisited. Plant Soil 355:23–27

    Article  CAS  Google Scholar 

  4. Cao Y, Zhang Y, Ma C, Li H, Zhang J, Chen G (2018) Growth, physiological responses, and copper accumulation in seven willow species exposed to Cu-a hydroponic experiment. Environ Sci Pollut R 25:19875–19886

    Article  CAS  Google Scholar 

  5. Chen M, Tang YL, Ao J, Wang D (2012) Effects of strontium on photosynthetic characteristics of oilseed rape seedlings. Russ J Plant Physiol 59:772–780

    Article  CAS  Google Scholar 

  6. Choi YH, Lee CW, Kim SR, Lee JH, Jo JS (1998) Effect of application time of radionuclides on their root uptake by Chinese cabbage and radish. J Environ Radioactiv 39:183–198

    Article  CAS  Google Scholar 

  7. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  Google Scholar 

  8. Gupta DK, Schulz W, Steinhauser G, Walther C (2018) Radiostrontium transport in plants and phytoremediation. Environ Sci Pollut R 25:29996–30008

    Article  CAS  Google Scholar 

  9. Kanter U, Hauser A, Michalke B, Draexl S, Schaeffner AR (2010) Caesium and strontium accumulation in shoots of Arabidopsis thaliana: genetic and physiological aspects. J Exp Bot 61:3995–4009

    Article  CAS  Google Scholar 

  10. Katayama H, Banba N, Sugimura Y, Tatsumi M, Kusakari S, Oyama H, Nakahira A (2013) Subcellular compartmentation of strontium and zinc in mulberry idioblasts in relation to phytoremediation potential. Environ Exp Bot 85:30–35

    Article  CAS  Google Scholar 

  11. Kim TW, Heinrich G (1997) Effect of strontium on chlorophyll content, peroxidase activity, and iron distribution in cell wells. J Plant Nutr 20:255–269

    Article  CAS  Google Scholar 

  12. McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282

    Article  CAS  Google Scholar 

  13. Meier U (2001) Growth stages of mono-and dicotyledonous plants, 2nd ed. Federal Biological Research Centre for Agriculture and Forestry, Berlin, Braunschweig

    Google Scholar 

  14. Moyen C, Roblin G (2010) Uptake and translocation of strontium in hydroponically grown maize plants, and subsequent effects on tissue ion content, growth and chlorophyll a/b ratio: comparison with Ca effects. Environ Exp Bot 68:247–257

    Article  CAS  Google Scholar 

  15. Moyen C, Roblin G (2013) Occurrence of interactions between individual Sr2+- and Ca2+-effects on maize root and shoot growth and Sr2+, Ca2+ and Mg2+ contents, and membrane potential: consequences on predicting Sr2+-impact. J Hazard Mater 260:770–779

    Article  CAS  Google Scholar 

  16. Rediske JH, Selders AA (1953) The absorption and translocation of strontium by plants. Plant Physiol 28:594–605

    Article  CAS  Google Scholar 

  17. Robinson NJ, Tommey AM, Kuske C, Jackson PJ (1993) Plant metallothioneins. Biochem J 295:1–10

    Article  CAS  Google Scholar 

  18. Soudek P, Valenová Š, Vavříková Z, Vaněk T (2006) 137Cs and 90Sr uptake by sunflower cultivated under hydroponic conditions. J Environ Radioactiv 88:236–250

    Article  CAS  Google Scholar 

  19. Sowa I, Wojciak-Kosior M, Strzemski M, Dresler S, Szwerc W, Bicharski T, Szymczak G, Kocjan R (2014) Biofortification of soy (Glycine max (L.) Merr.) with strontium ions. J Agric Food Chem 62:5248–5252

    Article  CAS  Google Scholar 

  20. Tian S, Peng H, Yang X, Lu L, Zhang L (2008) Phytofiltration of copper from contaminated water: Growth response, copper uptake and lignin content in Elsholtzia splendens and Elsholtzia argyi. B Environ Contam Toxicol 81:85–89

    Article  CAS  Google Scholar 

  21. Wang D, Wen F, Xu C, Tang Y, Luo X (2012) The uptake of Cs and Sr from soil to radish (Raphanus sativus L.)- potential for phytoextraction and remediation of contaminated soils. J Environ Radioactiv 110:78–83

    Article  CAS  Google Scholar 

  22. Wang X, Chen C, Wang J (2017) Phytoremediation of strontium contaminated soil by Sorghum bicolor (L.) Moench and soil microbial community-level physiological profiles (CLPPs). Environ Sci Pollut R 24:7668–7678

    Article  CAS  Google Scholar 

  23. Yan D, Zhao Y, Wang S, Xu D, Zhou L (2014) Characteristics of cesium and strontium transport in a soil-soybean system. Fresenius Environ Bull 23:175–183

    CAS  Google Scholar 

  24. Zabłudowska E, Kowalska J, Jedynak Ł, Wojas S, Skłodowska A, Antosiewicz DM (2009) Search for a plant for phytoremediation – what can we learn from field and hydroponic studies? Chemosphere 77:301–307

    Article  CAS  Google Scholar 

  25. Zheng W, Zhong Z, Wang H, Wang H, Wu D (2018) Effects of oxalic acid on arsenic uptake and the physiological responses of Hydrilla verticillata exposed to different forms of arsenic. B Environ Contam Toxicol 100:653–658

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by National Natural Science Foundation of China (41672228) and Natural Science Foundation of Beijing Municipality (7172146).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Jiang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, D., Wang, S., Ding, K. et al. Strontium Uptake and Effect in Lettuce and Radish Cultivated Under Hydroponic Conditions. Bull Environ Contam Toxicol 103, 453–460 (2019). https://doi.org/10.1007/s00128-019-02647-5

Download citation

Keywords

  • Strontium
  • Uptake
  • Translocation
  • Nutrient elements