Skip to main content

Heavy Metals in Bottom Sediments of Lake Kenon (The Trans-Baikal Territory, Russia)

Abstract

Concentrations of heavy metals in bottom sediments of Lake Kenon in descending order are distributed as follows: Mn > Zn > Pb > Mo > Cd. Spatial distribution of metals in bottom sediments of Lake Kenon depends on composition of bottom deposits (sands in shallow water and sapropel silt in the deep part), location of contamination sources (thermal power station, residential area), as well as density and duration of growth of aquatic plants. The greatest pollution of bottom sediments was observed in the area of TPP-1. Due to the intense and all-year-round process of aquatic vegetation growth in the area of TPP-1 contaminants are being accumulated in the bottom sediments of this part of the lake. However, plants that absorb metals in excess amounts and are passively moved by currents through of the system become a source of contamination of bottom sediments in relatively clean parts of the water reservoirs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Afonina EYu, Tashlikova NA, Bazarova BB (2017) Modern species composition and structure of hydrobiont communities in the Kenon Lake (Zabaikalsky Krai). Bull Moscow Soc Natural 122(1):71–83

    Google Scholar 

  2. Alekseenko VA, Alekseenko LP (2003) Geochemical barriers. Logos, Moskow (in Russian)

    Google Scholar 

  3. Alieva VI (2009) Natural and technogenic streams of chemical elements in the water of the Bratsk water reservoir. Dissertation. University of Irkutsk: p. 18. (in Russian)

  4. Andy H, Rifaat A, Draz S (2011) The Speciation and Potential Mobility of Pb, Cd, Cu and Zn in Lake Qarun Bottom Sediments, Fayioum, Egypt. JKAU 22(2):111–133. https://doi.org/10.4197/Mar.22-2.7

    Article  Google Scholar 

  5. Cardwell AJ, Hawker DW, Greenway M (2002) Metal accumulation in aquatic macrophytes from southeast Queensland Australia. Chemosphere 48(7):653–663. https://doi.org/10.1016/S0045-6535(02)00164-9

    Article  CAS  Google Scholar 

  6. Duan D, Ran Y, Cheng H, Chen J, Wan G (2014) Contamination trends of trace metals and coupling with algal productivity in sediment cores in Pearl River Delta, South China. Chemosphere 103:35–43. https://doi.org/10.1016/j.chemosphere.2013.11.011

    Article  CAS  Google Scholar 

  7. Dube A, Zbytniewski R, Kowalkowski T, Cukrowska E, Buszewski B (2001) Adsorption and Migration of Heavy Metals in Soil. Pol J Environ Stud 10(1):1–10

    CAS  Google Scholar 

  8. Erdoğrul Ö, Erbilir F (2007) Heavy Metal and Trace Elements in Various Fish Samples from Sır Dam Lake, Kahramanmaraş, Turkey. Environ Monit Assess 130:373–379. https://doi.org/10.1007/s10661-006-9404-5

    Article  CAS  Google Scholar 

  9. García-Ordiales E, Esbrí JM, Covelli S, López-Berdonces MA, Higueras PL, Loredo J (2016) Heavy metal contamination in sediments of an artificial reservoir impacted by long-term mining activity in the Almaden mercury district (Spain). Environ Sci Pollut Res 23(7):6024–6038. https://doi.org/10.1007/s11356-015-4770-6

    Article  CAS  Google Scholar 

  10. Hakanson L (1980) An ecological risk index for aquatic pollution control—a sedimentalogical approach. Water Res 14(8):975–1001. https://doi.org/10.1016/0043-1354(80)90143-8

    Article  Google Scholar 

  11. Jiang Z, Liu B, Liu H, Yang J (2014) Trace metals in Daihai Lake sediments, Inner Mongolia China. Environ Earth Sci 71(1):255–266. https://doi.org/10.1007/s12665-013-2429-5

    Article  CAS  Google Scholar 

  12. Klishko OK, Avdeev DV, Zazulina VE, Borzenko CV (2005) The role of chironomids (Diptera, Chironomidae) in the biological migration of chemical elements in the ecosystem of anthropogenic reservoirs. Read Mem Vladimir Yakovlevich Levanidov 3:360–367. https://elibrary.ru/item.asp?id=11672178. Accessed 04 Dec 2017 (in Russian)

  13. Kuklin AP, Matafonov PV (2014) Background concentrations of heavy metals in benthos from transboundary Rivers of the Transbaikalia region Russia. Bull Environ Contam Toxicol 92(2):137–142. https://doi.org/10.1007/s00128-013-1179.0

    Article  CAS  Google Scholar 

  14. Kuklin AP, Pomazkova NV (2017) Fresh-water macroalgae in monitoring of water pollution by toxic metals in near-border territories. Res J Pharm Biol Chem Sci 8(3):812–820

    CAS  Google Scholar 

  15. Kuriata-Potasznik A, Szymczyk S, Skwierawski A, Glinska-Lewczuk K, Cymes I (2016) Heavy metal contamination in the surface layer of bottom sediments in a flow-through lake: a case study of Lake Symsar in northern Poland. Water 8:358. https://doi.org/10.3390/w8080358

    Article  CAS  Google Scholar 

  16. Müller G (1969) Index of geo-accumulation in sediments of Rhine River. GeoJournal 2:108–118. https://doi.org/10.12691/env-1-3-1

    CAS  Article  Google Scholar 

  17. Noegrohati S (2006) Bioaccumulation dynamic of heavy metals in Oeochromis nilotycus. Berkala MIPA 16(2):29–40

    Google Scholar 

  18. Palma C, Oliveira A, Filali A, Valenca M, Mhammdi N (2012) Geochemical characteristics of water and sediment in summer period of the Loukkos and Sebou estuaries (NW Morocco): preliminary study. Bull l’Inst Sci Rabat, section Sciences de la Terre 34:69–77

    Google Scholar 

  19. Ptitsyn AB, Grebenshikova AI, Zamana LV, Itigilova MT, Matyugina EB, Smirnova OK, Yurgenson GA (2014) Mobility of chemical elements in water and terrestrial ecosystems. Bull Transbaikal State Univ 8(111): 23–32

    Google Scholar 

  20. Squadrone S, Abete MC, Brizio P, Pessani D, Favaro L (2018) Metals in feathers of African Penguins (Spheniscus demersus): considerations for the welfare and management of seabirds under human care. Bull Environ Contamin Toxicol 100(4):465–471. https://doi.org/10.1007/s00128-018-2293-9

    Article  CAS  Google Scholar 

  21. Tomlinson D, Wilson J, Harris C, Jeffery D (1980) Problems in the assessment of heavy metals levels in estuaries and the formation of a pollution index. Helgoländer Meeresunters 33:566–575. https://doi.org/10.1007/BF02414780

    Article  Google Scholar 

  22. Tsybekmitova GTs (2016) Filtration water quality of ash dump tpp-1 and possible ways of their stream into the Kenon Lake (Zabaikalsky Krai). Water Chem Ecol 2:11–17

    Google Scholar 

  23. Tsybekmitova GTs, Kuklin AP, Tashlykova NA, Afonina EY, Bazarova BB, Itigilova MT, Gorlacheva EP, Matafonov PV, Afonin AV (2017) Heavy metals in freshwater ecosystem of the Kenon Lake (Transbaikal Territory, Russia). Res J Pharm Biol Chem Sci 8(1):1779–1789. https://doi.org/10.15293/2226-3365.1703.12

    CAS  Article  Google Scholar 

  24. Vinogradov AP (1967) Introduction to ocean geochemistry. science, Moskow (in Russian)

  25. Weng H, Chen X (2000) Impact of polluted canal water on adjacent soil and groundwater systems. Environ Geol 39(8):945–950. https://doi.org/10.1007/s002549900069

    Article  CAS  Google Scholar 

Download references

Funding

The study is performed within the framework of the federal research program (project IX.137.1).

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Ts. Tsybekmitova.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsybekmitova, G.T., Kuklin, A.P. & Tsyganok, V.I. Heavy Metals in Bottom Sediments of Lake Kenon (The Trans-Baikal Territory, Russia). Bull Environ Contam Toxicol 103, 286–291 (2019). https://doi.org/10.1007/s00128-019-02645-7

Download citation

Keywords

  • Coal-fired power plants
  • Lake
  • Bottom sediments
  • Heavy metals
  • Bioaccumulation
  • Geoaccumulation