Skip to main content

Histological Changes in the Kidney of Sciades Herzbergii (Siluriformes, Ariidae) for Environmental Monitoring of a Neotropical Estuarine Area (São Marcos Bay, Northeastern Brazil)

Abstract

The aim of this study was to evaluate the environmental quality of a port in Brazil using the renal alterations in Sciades herzbergii as biomarkers of aquatic contamination. Samples of S. herzbergii were collected in two areas in São Marcos Bay, Brazil: (A1) Itaqui Port (potentially impacted area); and (A2) Puca Creek (control area). At the same time, the abiotic data was obtained, in addition to the sampling of water for metals analysis. The fish kidney of each specimen was submitted to the usual histological technique. It was possible to identify alterations such as melanomacrotic centers, dilation of the glomeruli, capillary endothelium gap, occlusion of the tubular lumen, immature nephron and dilated vessels. Samples of S. herzbergii collected in the port region showed a higher frequency of renal alterations, indicating that the organisms present in that region are probably suffering due to the impacts caused by the port activities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Akaishi FM, Silva AHC, Jakobi SCG, Eirasstofella DR, St-Jean SD, Courtenay SC, Lima EF, Wagener ALR, Scofield AL, Ribeiro CAO (2004) Morphological and neurotoxicological findings in tropical freshwater fish (Astyanax sp.) after waterborne and acute exposure to water soluble fraction (WSF) of crude oil. Arch Environ Contam Toxicol 46(2): 244–253

    CAS  Google Scholar 

  2. ANTAQ (2018) Agência Nacional de Transportes Aquaviários. https://portal.antaq.gov.br. Accessed 4 Apr 2018

  3. Au DWT (2004) The application of histo-cytopathological biomarkers in marine pollution monitoring: a review. Mar Pollut Bull 48:817–834. https://doi.org/10.1016/j.marpolbul.2004.02.032

    Article  CAS  Google Scholar 

  4. Azevedo JS, Sarkis JES, Hortellani MA, Ladle RJ (2012) Are Catfish (Ariidae) effective bioindicators for Pb, Cd, Hg, Cu and Zn? Water Air Soil Pollut 223:3911–3922. https://doi.org/10.1007/s11270-012-1160-2

    Article  CAS  Google Scholar 

  5. Bailey D, Solomon G (2004) Pollution prevention at ports: clearing the air. Environ Impact Assess Rev 24:749–774. https://doi.org/10.1016/j.eiar.2004.06.005

    Article  Google Scholar 

  6. Banas NS, Hickey BM, MacCready P, Newton JA (2004) Dynamics of Willapa Bay, Washington: a highly unsteady, partially mixed Estuary. J Phys Oceanogr 34:2413–2427. https://doi.org/10.1175/jpo2637.1

    Article  Google Scholar 

  7. Brasil (2005) Conselho Nacional do Meio Ambiente (CONAMA). Resolução no 357, de 17 de março de 2005. https://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=459. Accessed 5 Apr 2018

  8. Brasil (2011) Conselho Nacional do Meio Ambiente (CONAMA). Resolução no 430, de 16 de maio de 2011. https://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=646. Accessed 5 Apr 2018.

  9. Canli M, Atli G (2003) The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species. Environ Pollut 121:129–136. https://doi.org/10.1016/S0269-7491(02)00194-X

    Article  CAS  Google Scholar 

  10. Cardoso TP, Mársico ET, Medeiros RJ, Tortelly R, Sobreiro LG (2009) Concentração de mercúrio e análise histopatológica em músculo, rim e cérebro de peixe-espada (Trichiurus lepturus) coletados na praia de Itaipu, Niterói, Rio de Janeiro, Brasil Mercury level and histopathologic analysis of muscle, kidney and brain. Ciência Rural 39:540–546

    Article  CAS  Google Scholar 

  11. Carvalho-Neta RNF, Torres AR, Abreu-Silva AL (2012) Biomarkers in catfish Sciades herzbergii (teleostei: ariidae) from polluted and non-polluted areas (São Marcos’ Bay, Northeastern Brazil). Appl Biochem Biotechnol 166:1314–1327. https://doi.org/10.1007/s12010-011-9519-1

    Article  CAS  Google Scholar 

  12. Castro JS, Fernandes JFF, Teixeira EG et al (2018) Biomarcadores histológicos em brânquias de Sciades herzbergii (Siluriformes, Ariidae) capturados no Complexo Estuarino de São Marcos, Maranhão. Arq Bras Med Veterinária e Zootec 70:410–418. https://doi.org/10.1590/1678-4162-9906

    Article  Google Scholar 

  13. Cengiz EI (2006) Gill and kidney histopathology in the freshwater fish Cyprinus carpio after acute exposure to deltamethrin. Environ Toxicol Pharmacol 22:200–204. https://doi.org/10.1016/j.etap.2006.03.006

    Article  CAS  Google Scholar 

  14. Chapman LJ, Kramer DL (1991) Limnological observations of an intermittent tropical dry forest stream. Hydrobiologia 226:153–166. https://doi.org/10.1007/BF00006857

    Article  Google Scholar 

  15. Daniel S, Richard H, Scott S, Michael HD WB (2008) The toxicology of fishes. In: The toxicology of fishes. pp 683–731

  16. Duman F, Kar M (2012) Temporal variation of metals in water, sediment and tissues of the European chup (Squalius cephalus L.). Bull Environ Contam Toxicol 89:428–433. https://doi.org/10.1007/s00128-012-0679-7

    Article  CAS  Google Scholar 

  17. EMAP (2018) Empresa Maranhense de Administração Portuária. http://www.emap.ma.gov.br. Accessed 21 June 2018

  18. Fortes Carvalho Neta RN, Barbosa GL, Torres HS et al (2017) Changes in glutathione S-transferase activity and parental care patterns in a Catfish (Pisces, Ariidae) as a biomarker of anthropogenic impact in a Brazilian harbor. Arch Environ Contam Toxicol 72:132–141. https://doi.org/10.1007/s00244-016-0326-0

    Article  CAS  Google Scholar 

  19. Hinton DE (1990) Integrative histopathological effects of environmental stressors on fishes. Am Fish Soc Symp 8:51–66

    Google Scholar 

  20. Hinton DE, Baumann PC, Gardner GR, Hawkins WE, Hendricks JD, Murchelano RA, Okihiro MS (1992) Histopathological biomarkers. In: Huggett RJ, Kimerli RA, Mehrle PM, Bergman HL (eds) Biomarkers: biochemical, physiological and histological markers of anthrop.

  21. IBGE. Regiões e Estados do Brasil. Maranhão. https://www.ibge.gov.br/cidades-e-estados/ma/.html. Acesso em março de 2019

  22. Mansour SA, Sidky MM (2002) Ecotoxicological studies. 3. Heavy metals contaminating water and fish from Fayoum Governorate, Egypt. Food Chem 78:15–22. https://doi.org/10.1016/S0308-8146(01)00197-2

    Article  CAS  Google Scholar 

  23. Nichols JW, Zhang X, Edwards JS et al (2010) Predicting chemical impacts on vertebrate endocrine systems. Environ Toxicol Chem 30:39–51. https://doi.org/10.1002/etc.376

    Article  CAS  Google Scholar 

  24. Nowak BF, Gagnon MM, Fu D et al (2017) Using a multi-biomarker approach to assess the effects of pollution on sand flathead (Platycephalus bassensis) from Port Phillip Bay, Victoria, Australia. Mar Pollut Bull 119:211–219. https://doi.org/10.1016/j.marpolbul.2017.03.067

    Article  CAS  Google Scholar 

  25. Oost D, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Enviiron Toxicol Pharmacol 13:57–149. https://doi.org/10.1016/S1382-6689(02)00126-6

    Article  Google Scholar 

  26. Poleksic V, Mitrovic-Tutundzic V (1994) Fish gills as a monitor of sublethal and chronic effects of pollution. In: Müller R, Lloyd R (eds) Sublethal and chronic effects of pollutants on freshwater fish. Cambridge University Press, Cambridge, pp 339–352

    Google Scholar 

  27. Rajeshkumar S, Liu Y, Zhang X et al (2018) Studies on seasonal pollution of heavy metals in water, sediment, fish and oyster from the Meiliang Bay of Taihu Lake in China. Chemosphere 191:626–638. https://doi.org/10.1016/j.chemosphere.2017.10.078

    Article  CAS  Google Scholar 

  28. Reimschuessel R (2001) A fish model of renal regeneration and development. ILAR J 42:285–291. https://doi.org/10.1093/ilar.42.4.285

    Article  CAS  Google Scholar 

  29. Ribeiro EB, Almeida ZS, Carvalho-Neta RNF (2012) Hábito alimentar do bagre Sciades herzbergii (Siluriformes, Ariidae) da Ilha dos Caranguejos, Maranhão, Brasil. Arq Bras Med Vet e Zootec 64:1761–1765. https://doi.org/10.1590/S0102-09352012000600048

    Article  Google Scholar 

  30. Schintu M, Marrucci A, Marras B et al (2016) Heavy metal accumulation in surface sediments at the port of Cagliari (Sardinia, western Mediterranean): environmental assessment using sequential extractions and benthic foraminifera. Mar Pollut Bull 111:45–56. https://doi.org/10.1016/j.marpolbul.2016.07.029

    Article  CAS  Google Scholar 

  31. Singh NP, Ogburn CE, Wolf NS et al (2001) DNA double-strand breaks in mouse kidney cells with age. Biogerontology 2:261–270. https://doi.org/10.1023/A:1013262327193

    Article  CAS  Google Scholar 

  32. Sousa DBP, Almeida ZS, Carvalho-Neta RNF (2013) Biomarcadores histológicos em duas espécies de bagres estuarinos da Costa Maranhense, Brasil [Histology biomarkers in two estuarine catfish species from the Maranhense Coast, Brazil]. Arq Bras Med Vet Zootec 65:369–376

    Article  Google Scholar 

  33. Steinel NC, Bolnick DI (2017) Melanomacrophage centers as a histological indicator of immune function in fish and other poikilotherms. Front Immunol 8:1–8. https://doi.org/10.3389/fimmu.2017.00827

    Article  CAS  Google Scholar 

  34. Thophon S, Kruatrachue M, Upatham ES et al (2003) Histopathological alterations of white seabass, Lates calcarifer, in acute and subchronic cadmium exposure. Environ Pollut 121:307–320. https://doi.org/10.1016/S0269-7491(02)00270-1

    Article  CAS  Google Scholar 

  35. Tyler G (1991) AA or ICP—Which do you choose? ICP Instruments at work. Varian, optical spectroscopy instruments. Australia, 1ª ed, pp 1–6

  36. UNCTAD (2017) United Nations Conference on Trade and Development. https://unctad.org. Accessed 30 Mar 2018.

  37. Vítek T, Spurný P, Mareš J, Ziková A (2007) Heavy metal contamination of the Loučka River water ecosystem. Acta Vet Brno 76:149–154. https://doi.org/10.2754/avb200776010149

    Article  CAS  Google Scholar 

  38. Zhao L, Yang F, Yan X (2013) Concentrations of Selected Trace Elements in Marine Bivalves and the Dietary Risk to Residents of Dalian City, Northern China. Hum Ecol Risk Assess 19:145–150. https://doi.org/10.1080/10807039.2013.735144

    Article  CAS  Google Scholar 

  39. Zhou Q, Zhang J, Fu J et al (2008) Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal Chim Acta 606:135–150. https://doi.org/10.1016/j.aca.2007.11.018

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Foundation for Scientific Research and Development of Maranhão/Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão - FAPEMA (Grant number 040/2014]. It was also financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Affiliations

Authors

Contributions

All authors participated and will approve the publication of this article.

Corresponding author

Correspondence to Jonatas da Silva Castro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

da Silva Castro, J., França, C.L., de Lima Cardoso, R. et al. Histological Changes in the Kidney of Sciades Herzbergii (Siluriformes, Ariidae) for Environmental Monitoring of a Neotropical Estuarine Area (São Marcos Bay, Northeastern Brazil). Bull Environ Contam Toxicol 103, 246–254 (2019). https://doi.org/10.1007/s00128-019-02633-x

Download citation

Keywords

  • Biomarkers
  • Port complex
  • Environmental impact
  • Catfish