Skip to main content

Species-Specific (Hyalella azteca and Lymnea stagnalis) Dietary Accumulation of Gold Nano-particles Associated with Periphyton

Abstract

Ecological effects of gold nano-particles (AuNP) are examined due to growing use in consumer and industrial materials. This study investigated uptake and movement of AuNPs through an aquatic food chain. Simple (single-species) and diverse (multi-species) periphyton communities were exposed to AuNP (0, 100, 500 µg L−1 treatments). AuNP quickly aggregated and precipitated from the water column, suggesting it is an insignificant route of AuNP exposure even at elevated concentrations. Gold was measured in 100 and 500 µg L−1 periphyton treatments. Gold accumulation was similar between periphyton treatments, suggesting physical processes were important for AuNP basal accumulation. Hyalella azteca and Lymnea stagnalis whole body tissue analysis indicated gold accumulation may be attributed to different feeding mechanisms, general versus selective grazing, respectively. Results suggest trophic transfer of AuNP is organism specific and aggregation properties of AuNP are important when considering fate of nano-particles in the environment and movement through aquatic food webs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Anderson C, Moreno F et al (2005) A comparative analysis of gold-rich plant material using various analytical methods. Microchem J 81:81–85

    Article  CAS  Google Scholar 

  2. Baker MA, de Guzman G, Ostermiller JD (2009) Differences in nitrate uptake among benthic algal assemblages in a mountain stream. J N AM Benthol Soc 28:24–33

    Article  Google Scholar 

  3. Balog G, Voronezhskaya E et al (2012) Organization of the serotonergic innervations of the feeding (buccal) musculature during maturation of L. stagnalis. J Comp 520:315–329

    CAS  Google Scholar 

  4. Borgmann U (1996) Systematic analysis of aqueous ion requirements of Hyalella azteca: a standard artificial medium. Arch Environ Contam Toxicol 30:356–363

    Article  CAS  Google Scholar 

  5. Botha TL, Boodhia K, Wepener V (2016) Adsorption, uptake and distribution of gold nanoparticles in Daphnia magna following long term exposure. Aquat Toxicol 170:104–111

    Article  CAS  Google Scholar 

  6. Bozich JS, Lohse SE et al (2014) Surface chemistry, charge and ligand type impact the toxicity of gold nano-particles to Daphnia magna. Environ Sci 1:260

    CAS  Google Scholar 

  7. Burton GA Jr., Hudson M et al. (2019) Weight-of-evidence approach for assessing removal of metals from the water column for chronic environmental hazard classification. Environ Toxicol Chem In Press.

  8. Cardinale BJ (2011) Biodiversity improves water quality through niche partitioning. Nature 472:86–91

    Article  CAS  Google Scholar 

  9. Costello DM, Rosi-Marshall EJ et al (2015) A novel method to assess the effects of chemical stressors on natural biofilm structure and function. Freshwater Biol 61:12

    Google Scholar 

  10. Croteau MN, Luoma SN (2007) Characterizing dissolved Cu and Cd uptake in terms of the biotic ligand and biodynamics using enriched stable isotopes. Environ Sci Technol 41:3150–3145

    Article  CAS  Google Scholar 

  11. Diegoli S, Manciulea AL et al (2008) Interaction between manufactured gold nano-particles and naturally occurring organic macromolecules. Sci Total Environ 402:51–61

    Article  CAS  Google Scholar 

  12. Feiyue W, Goulet RR, Chapman PM (2004) Testing sediment biological effects with the freshwater amphipod Hyalella azteca. Chemosphere 57:1713–1724

    Article  CAS  Google Scholar 

  13. Ferry J, Craig P et al (2009) Transfer of gold nano-particles from the water column to the estuarine food web. Nat Nanotechnol 4:441–444

    Article  CAS  Google Scholar 

  14. Gaiser BK et al (2011) Effects of silver and cerium dioxide micro- and nano-sized particles on Daphnia magna. J Environ Monit 13:1227–1235

    Article  CAS  Google Scholar 

  15. Galloway T, Lewis C et al (2010) Sublethal toxicity of nano-titanium dioxide and carbon nanotubes in a sediment dwelling marine polychaete. Environ Pollut 158:1748–1755

    Article  CAS  Google Scholar 

  16. Garcia-Cambero JP, Garcia MN et al (2013) Converging hazard assessment of gold nano-particles to aquatic organisms. Chemosphere 93:1194–1200

    Article  CAS  Google Scholar 

  17. Glenn JB, White SA, Klaine SJ (2012) Interactions of gold nano-particles with freshwater aquatic macrophytes are size and species dependent. Environ Toxicol Chem 31:194–201

    Article  CAS  Google Scholar 

  18. Griffit RJ, Brown-Peterson NJ et al (2011) Effects of chronic nanoparticulate silver exposure to adult and juvenile sheepshead minnows. Environ Toxicol Chem 31:160–167

    Article  CAS  Google Scholar 

  19. Handy RD, Cornelis G et al (2012) Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench. Environ Toxicol Chem 31:15–31

    Article  CAS  Google Scholar 

  20. Hull MS, Chaurand P et al (2011) Filter-feeding bivalves store and biodeposit colloidally stable gold nano-particles. Environ Sci Technol 45:6592–6599

    Article  CAS  Google Scholar 

  21. Hyung H, Fortner HD, Hughes JB, Kim JH (2006) Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol 41:179–184

    Article  CAS  Google Scholar 

  22. Joubert Y, Pan JF et al (2013) Subcellular localization of gold nano-particles in the estuarine bivalve Scobicularia plana after exposure through the water. Gold Bull 10:1007

    Google Scholar 

  23. Kimling J, Maier M et al (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707

    Article  CAS  Google Scholar 

  24. Kulacki KJ, Cardinale BJ et al (2012) How do stream organisms respond to, and influence, the concentration of TiO2 nanoparticle? Environ Toxicol Chem 31:2414–2422

    Article  CAS  Google Scholar 

  25. Manusadzianas L, Caillet C et al (2012) Toxicity of copper oxide nanoparticle suspensions to aquatic biota. Environ Toxicol Chem 31:108–114

    Article  CAS  Google Scholar 

  26. McLaughlin J and Bonzongo JC (2012) Effects of natural water chemistry on nanosilver behavior and toxicity to C. dubia and P. subcapitata Environ Toxicol Chem 31:168–75.

  27. Mwangi JN, Wang N et al (2012) Toxicity of carbon nanotubes to freshwater aquatic invertebrates. Environ Toxicol Chem 31:1823–1830

    Article  CAS  Google Scholar 

  28. Nason J, McDowell S, Callahan T (2012) Effects of natural organic matter type and concentration on the aggregation of citrate-stabilized AuNP. J Environ Monit 14:1885

    Article  CAS  Google Scholar 

  29. Neumann P, Borgmann U, Norwood W (1999) Effect of gut clearance on metal body concentrations in Hyalella azteca. Environ Toxicol Chem 18:976–984

    CAS  Google Scholar 

  30. Norwood WP, Borgmann U, Dixon DG (2007) Chronic toxicity of arsenic, cobalt, chromium and manganese to Hyalella azteca in relation to exposure and bioaccumulation. Environ Pollut 147:262–272

    Article  CAS  Google Scholar 

  31. Pan JF, Buffet PE et al (2012) Size dependent bioaccumulation and ecotoxicity of gold nano-particles in an endobenthic invertebrate. Environ Pollut 168:37–43

    Article  CAS  Google Scholar 

  32. Park S, Woodhall J et al (2015) Do particle size and surface functionality affect uptake and depuration of AuNP by aquatic invertebrates? Environ Toxicol Chem 34:850–859

    Article  CAS  Google Scholar 

  33. Parks A, Portis L et al (2013) Bioaccumulation and toxicity of single walled carbon nanotubes (SWNT) to benthic organisms at the base of the marine food chain. Environ Toxicol Chem 32:1270–1277

    Article  CAS  Google Scholar 

  34. Petersen EJ, Huang Q, Weber WJ Jr (2008) Ecological uptake and depuration of carbon nanotubes by Lumbriculus variegatus. Environ Health Perspect 116:496–500

    Article  CAS  Google Scholar 

  35. Petersen EJ, Akkanen J, Kukkonen JV, Weber WJ (2009) Biological uptake and depuration of carbon nanotubes by Daphnia magna. Environ Sci Technol 43:2969–2975

    Article  CAS  Google Scholar 

  36. Petosa AR, Jaisi DP et al (2010) Aggregation and deposition of nanomaterials in aquatic environments: role of physicochemical interactions. Environ Sci Technol 44:6532–6549

    Article  CAS  Google Scholar 

  37. Renault S, Baudrimont M et al (2008) Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga and a benthic bivalve. Gold Bull 41:116–126

    Article  CAS  Google Scholar 

  38. Rogevich EC, Hoang TC, Rand GM (2008) Influence of water quality and organisms age on copper toxicity to the Florida Apple snail. Arch Env Con Tech 54:690–696

    Article  CAS  Google Scholar 

  39. Sabater S, Guasch H et al (2007) Monitoring the effect of chemicals on biological communities. The biofilm as an interface. Anal Bioann Chem 387:1425–1434

    Article  CAS  Google Scholar 

  40. Schaumann GE et al (2015) Understanding fate and biological effects of Ag- and TiO2-NP in the environment. Sci Total Environ 535:3–19

    Article  CAS  Google Scholar 

  41. Skjolding LM, Kern K et al (2014) Uptake and depuration of gold nano-particles in Daphnia magna. Ecotoxicology 23:1172–1183

    Article  CAS  Google Scholar 

  42. Tourinho PS, van Gestel C et al (2012) Metal-based nano-particles in soil: fate, behavior, and effects on soil invertebrates. Environ Toxicol Chem 31:1679–1692

    Article  CAS  Google Scholar 

  43. United States National Research Council (2012) Summary: committee to develop a research strategy for environmental, health, and safety aspects of engineered nanomaterials. National Academies Press

  44. Unrine JM, Shoults-Wilson WA et al (2012) Trophic transfer of Au nano-particles from soil along a simulated terrestrial food chain. Environ Sci Technol 46:9753–9760

    Article  CAS  Google Scholar 

  45. US EPA (1996) Method 3050B: Acid Digestion of Sediments, Sludges, and Soils. Revision 2.

  46. US EPA (2000) Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates. Second Edition.

  47. Wang Z, Quik JTK et al (2018) Dissipative particle dynamic simulation and assessment of impacts of humic substances on aggregation of NP. Environ Toxicol Chem 37:1024–1031

    Article  CAS  Google Scholar 

  48. Werlin R, Priester JH et al (2011) Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain. Nat Nanotechnol 6:65–71

    Article  CAS  Google Scholar 

  49. Wray AT, Klaine SJ (2015) Modeling the influence of physiochemical properties on AuNP uptake and elimination by Daphnia magna. Environ Toxicol Chem 34:860–872

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported with funding from the U.S. Environmental Protection Agency STAR grant G2007-STAR-R2. We appreciate the support of Steve Klaine and his laboratory personnel at Clemson University. This paper is dedicated to the memory of Steve.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. L. Hudson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 551 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hudson, M.L., Costello, D.M., Daley, J.M. et al. Species-Specific (Hyalella azteca and Lymnea stagnalis) Dietary Accumulation of Gold Nano-particles Associated with Periphyton. Bull Environ Contam Toxicol 103, 255–260 (2019). https://doi.org/10.1007/s00128-019-02620-2

Download citation

Keywords

  • Gold nano-particles
  • Uptake
  • Hyalella azteca
  • Lymnea stagnalis
  • Toxicity
  • Accumulation