Skip to main content

Short-Term Effects on Agricultural Soils Irrigated with Reclaimed Water in Baja California, México

Abstract

In 2014 reclaimed water (RW) started to be used for agricultural irrigation of 200 ha in Maneadero Valley, Baja California, Mexico. The RW had relatively high electrical conductivity (4–5 dS m−1), and K+, Mg2+, PO43− and Cl concentrations relative to irrigation guidelines. However, no accumulation of these elements, nor total nitrogen, was observed in the studied soils. The main effect of RW irrigation was the downcore leaching of Cl and Na+ below 120 cm, causing an increase in electrical conductivity in the lower soil horizons. Al, Fe and Zn showed a twofold to eightfold accumulation in the top soil layer after 2 years. Moderate to severe chemical clogging of dripping systems and potential biological clogging are likely to occur. Mexican national guidelines for the reuse of RW do not take into account specific variables that could change the quality of agricultural soil or lead to clogging of drip irrigation systems.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Al-Hamaiedeh H, Bino M (2010) Effect of treated grey water reuse in irrigation on soil and plants. Desalination 256:115–119. https://doi.org/10.1016/j.desal.2010.02.004

    Article  CAS  Google Scholar 

  2. APHA (2012) Standard methods for the examination of water and wastewater, 22nd edn. American Public Health Association/American Water Works Association/Water Environment Federation, Washington

    Google Scholar 

  3. Asano T (1987) Irrigation with reclaimed municipal wastewater. GeoJournal 15:273–282. https://doi.org/10.1007/BF00213455

    Article  Google Scholar 

  4. Ayers RS, Westcot DW (1985) Water quality for irrigation. Irrig Drain Pap No. 29, Rev. I, FAO, Rome

  5. Bradford GR, Bair FL, Hunsaker V (1971) Trace and major element contents of soil saturation extracts. Soil Sci 112:225–230

    Article  CAS  Google Scholar 

  6. Chen W, Lu S, Pan N, Wang Y, Wu L (2015) Impact of reclaimed water irrigation on soil health in urban green areas. Chemosphere 119:654–661. https://doi.org/10.1016/j.chemosphere.2014.07.035

    Article  CAS  Google Scholar 

  7. Daesslé LW, Sánchez EC, Camacho-Ibar VF, Mendoza-Espinosa LG, Carriquiry JD, Macias VA, Castro PG (2005) Geochemical evolution of groundwater in the Maneadero coastal aquifer during a dry year in Baja California, Mexico. Hydrogeol J 13:584–595. https://doi.org/10.1007/s10040-004-0353-1

    Article  CAS  Google Scholar 

  8. Daesslé LW, Ruiz-Montoya L, Tobschall HJ, Chandrajith R, Camacho-Ibar VF, Mendoza-Espinosa LG, Quintanilla-Montoya AL, Lugo-Ibarra K (2009) Fluoride, nitrate and water hardness in groundwater supplied to the rural communities of Ensenada County, Baja California, Mexico. Environ Geol 58:419–429. https://doi.org/10.1007/s00254-008-1512-9

    Article  CAS  Google Scholar 

  9. Daesslé LW, Pérez-Flores MA, Serrano-Ortiz J, Mendoza-Espinosa L, Manjarrez E, Lugo-Ibarra KC, Gómez-Treviño E (2014) A geochemical and 3D-geometry geophysical survey to assess artificial groundwater recharge potential in the Pacific coast of Baja California, Mexico. Environ Earth Sci 71:3477–3490. https://doi.org/10.1007/s12665-013-2737-9

    Article  CAS  Google Scholar 

  10. Diario Oficial de la Federación (1996) Norma oficial mexicana NOM-001-SEMARNAT-1996, Que establece los límites máximos permisibles de descargas de aguas residuales en aguas y bienes nacionales, Secretaría de Medio Ambiente y Recursos Naturales, México D.F. http://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/agenda/DOFsr/DO2470.pdf

  11. FAO (1992) Wastewater treatment and use in agriculture. M.B. Pescod. Irrigation and Drainage Paper 47 Rev. FAO, Rome. http://eprints.icrisat.ac.in/8638/

  12. Gilabert-Alarcón C, Salgado-Méndez S, Daesslé L, Mendoza-Espinosa L, Villada-Canela M (2018a) Regulatory challenges for the use of reclaimed water in Mexico: a case study in Baja California. Water 10:1432. https://doi.org/10.3390/w10101432

    Article  Google Scholar 

  13. Gilabert-Alarcón C, Daesslé LW, Salgado-Méndez SO, Pérez-Flores MA, Knöller K, Kretzschmar TC, Stumpp C (2018b) Effects of reclaimed water discharge in the Maneadero coastal aquifer, Baja California, Mexico. Appl Geochem 92:121–139. https://doi.org/10.1016/j.apgeochem.2018.03.006

    Article  CAS  Google Scholar 

  14. Gloaguen TV, Forti CM, Lucas Y, Montes CR, Gonçalvers AB, Herpin U, Melfi AJ (2007) Soil solution chemistry of a Brazilian oxisol irrigated with treated sewage effluent. Agric Water Manage 88:119–131. https://doi.org/10.1016/j.agwat.2006.10.018

    Article  Google Scholar 

  15. Grieve CM, Poss JA, Grattan SR, Shouse PJ, Lieth JH, Zeng L (2005) Productivity and mineral nutrition of Limonium species irrigated with saline wastewaters. HortScience 40:654–658

    Article  Google Scholar 

  16. Grieve CM, Poss JA, Amrhein C (2006) Response of Matthiola incana to irrigation with saline wastewaters. HortScience 41:119–123. https://doi.org/10.21273/HORTSCI.41.1.11

    Article  CAS  Google Scholar 

  17. Halliwell DJ, Barlow KM, Nash DM (2001) A review of the effects of wastewater sodium on soil physical properties and their implications for irrigation systems. Soil Res 39:1259–1267. https://doi.org/10.1071/SR00047

    Article  CAS  Google Scholar 

  18. Holmquist A, Honeywell PE, Higham D (2012) Effects of recycled water on soil chemistry. Guidelines for water reuse 2012 USA, pp. D-71. http://www3.epa.gov/region1/npdes/merrimackstation/pdfs/ar/AR-1530.pdf. Accessed 30 Apr 2018

  19. Kabata-Pendias A (2010) Trace elements in soils and plants. CRC Press, Florida

    Book  Google Scholar 

  20. Li YK, Zhou B, Liu YZ, Jiang YG, Pei YT, Shi Z (2013) Preliminary surface topographical characteristics of biofilms attached on drip irrigation emitters using reclaimed water. Irrig Sci 31:557–574. https://doi.org/10.1071/s00271-012-0329-1

    Article  Google Scholar 

  21. Marofi S, Shakarami M, Rahimi G, Ershadfath F (2015) Effects of wastewater and compost on leaching nutrients of soil column under basil cultivation. Agric Water Manage 158:266–276. https://doi.org/10.1016/j.agwat.2015.05.007

    Article  Google Scholar 

  22. Mendoza-Espinosa LG, Daesslé LW (2018) Consolidating the use of reclaimed water irrigation and infiltration in semi/arid agricultural valley in Mexico: water management experiences and results. J Water Sanit Hyg Dev 8:479–687. https://doi.org/10.2166/washdev.2018.021

    Article  Google Scholar 

  23. Nakayama FS, Bucks DA (1991) Water quality in drip/trickle irrigation: a review. Irrig Sci 12:187–192

    Article  Google Scholar 

  24. Oliveira PCP, Gloaguen TV, Gonçalves RAB, Santos DL, Couto CF (2016) Soil chemistry after irrigation with treated wastewater in semiarid climate. Rev Brasil Cienc Solo 40:1–13. https://doi.org/10.1590/18069657rbcs20140664

    Article  Google Scholar 

  25. Qureshi AS, Hussain MI, Ismail S, Khan QM (2016) Evaluating heavy metals accumulation and potential health risk in vegetables irrigated with treated wastewater. Chemposhere 163:54–61

    Article  CAS  Google Scholar 

  26. Reid H, Sarkis S (2006) Australian and international reclaimed water guidelines: the fundamentals. In: Stevens D (ed) Growing crops with reclaimed wastewater. CSIRO Publishing, Australia, pp 39–60

    Google Scholar 

  27. Rengasamy P (2006) Soil salinity and sodicity. In: Stevens D (ed) Growing crops with reclaimed wastewater. CSIRO Publishing, Australia, pp 125–137

    Google Scholar 

  28. Salgot M, Folch M (2018) Wastewater treatment and water reuse. Curr Opin Environ Sci Health 2:64–74. https://doi.org/10.1016/j.coesh.2018.03.005

    Article  Google Scholar 

  29. Schuch U (2005) Effect of reclaimed water and drought on salt-sensitive perennials. HortScience 40:1093

    Article  Google Scholar 

  30. Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–133. https://doi.org/10.1016/j.sjbs.2014.12.001

    Article  CAS  Google Scholar 

  31. Singh PK, Deshbhratar PB, Ramteke DS (2012) Effects of sewage wastewater irrigation on soil properties, crop yield and environment. Agric Water Manage 103:100–104. https://doi.org/10.1016/j.agwat.2011.10.022

    Article  Google Scholar 

  32. US Salinity Laboratory Staff (1954) Diagnosis and improvement of saline and alkali soils. USDA Handbook Nr. 60. Government Printing Office, Washington, DC

  33. USDA (1998) Soil Quality Indicators: pH. USDA Natural Resources Conservation Service. https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052208.pdf. Accessed 30 Apr 2018

  34. Wu L, Dodge L (2005) Special report for the Elvenia J Slosson Endowment Fund. http://slosson.ucdavis.edu/files/215300.pdf. Accessed 15 Oct 2018

Download references

Acknowledgements

To the Mexican Council for Science and Technology (CONACyT) for the scholarship to C.G.-A. and S.O.S.-M through PhD Grants 414727 and 279742 and the Agriculture Department of the State of Baja California (SEDAGRO) for partially funding this research. Special thanks to A. Guzmán, manager of the Maneadero groundwater technical council, for his support and to D. Jaime for granting access to his property.

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. W. Daesslé.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salgado-Méndez, S., Gilabert-Alarcón, C., Daesslé, L.W. et al. Short-Term Effects on Agricultural Soils Irrigated with Reclaimed Water in Baja California, México. Bull Environ Contam Toxicol 102, 829–835 (2019). https://doi.org/10.1007/s00128-019-02611-3

Download citation

Keywords

  • Treated wastewater
  • Irrigation
  • Salinity
  • Metals
  • Clogging