Skip to main content

Assessing Human Health Risks Associated with Consumption of Metal Content in Shrimp from NW Mexico

Abstract

Shrimp of Farfantepenaeus californiensis (78 groups) and Litopenaeus stylirostris (14 groups) were caught in the northwestern fishing zones in Mexico during the 2014–2015 fishing season (September–February); both shrimp species have high commercial value. Muscle, hepatopancreas and exoskeleton were analyzed to determine their metal contents. For F. californiensis, the highest Cd, Pb and Zn contents were determined in specimens caught off the State of Baja California Sur (BCS) with 22.4 ± 8.9 (hepatopancreas), 2.83 ± 4.63 (muscle), and 748.5 ± 1567 (muscle) µg/g, in the regions off Mulegé, Los Cabos and Los Cabos, respectively. For L. stylirostris, the fishing zone of Comundú (BCS) showed higher Cd (12.3 ± 11.5 µg/g), Cu (569.1 ± 646.5 µg/g) and Zn (549.7 ± 400.7 µg/g) contents; all values were determined in the hepatopancreas. Regarding the hazard quotient and total hazard quotient calculated in this study, the consumption of marine shrimp caught off NW Mexico does not represent a risk to human health (both < 1).

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Anandkumar A, Nagarajan R, Prabakaran K, Rajaram R (2017) Trace metal dynamics and risk assessment in the commercially important marine shrimp species collected from the Miri coast, Sarawak, East Malaysia. Reg Stud Mar Sci 16:79–88. https://doi.org/10.1016/j.rsma.2017.08.007

    Article  Google Scholar 

  2. Bergey LL, Weis JS (2007) Molting as a mechanism of depuration of metals in the diddler crab, Uca pugnax. Mar Environ Res 64:556–562. https://doi.org/10.1016/j.marenvres.2007.04.009

    Article  CAS  Google Scholar 

  3. Boada M, Moreno MA, Gil H, Marcano J, Maza J (2007) Metales pesados (Cu+ 2, Cd+ 2, Pb+ 2, Zn+ 2) en músculo y cefalotórax de camarones silvestres Litopenaeus schmitti. Farfantepenaeus subtilis, F. notialis y F. brasiliensis) de la región oriental de Venezuela. Rev Científ 17:186–192

    Google Scholar 

  4. CANAIVE (2012) Cuánto mide México. El tamaño sí importa. Cámara Nacional de la Industria del Vestido, México D.F.

    Google Scholar 

  5. CONAPESCA (2014) Anuario estadístico de pesca y acuacultura. Comisión Nacional de Acuacultura y Pesca. Instituto Nacional de Pesca, Mazatlán

    Google Scholar 

  6. Daesslé LW, Carriquiry JD, Navarro R, Villaescusa-Celaya JA (2000) Geochemistry of surficial sediments from Sebastian Vizcaino Bay, Baja California. J Coastal Res 16:1133–1145

    Google Scholar 

  7. Delgado-Alvarez C, Ruelas-Inzunza JR, Osuna-López JI, Voltolina D, Frías-Espericueta MG (2015) Mercury content in Litopenaeus vannamei from shrimp farms (NW Mexico). Chemosphere 119:1015–1020. https://doi.org/10.1016/j.chemosphere.2014.08.079

    Article  CAS  Google Scholar 

  8. Diop M, Amara R (2016) Mercury concentrations in the coastal marine food web along the Senegalese coast. Environ Sci Pollut Res 23:11975–11984. https://doi.org/10.1007/s11356-016-6386-x

    Article  CAS  Google Scholar 

  9. Dökmeci AH, Yildiz T, Ongen A, Sivri N (2014) Heavy metal concentration in deepwater rose shrimp species (Parapenaeus longirostris, Lucas, 1846) collected from the Marmara Sea Coast in Tekirdağ. Environ Monit Assess 186:2449–2454. https://doi.org/10.1007/s10661-013-3551-2

    Article  CAS  Google Scholar 

  10. EPA (2000) Risk-based concentration table. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  11. Firat Ö, Gök G, Çoğun HY, Yüzereroğlu TA, Kargin F (2008) Concentrations of Cr, Cd, Cu, Zn and Fe in crab Charybdis longicollis and shrimp Penaeus semisulcatus from the Iskenderun Bay, Turkey. Environ Monit Assess 147:117–123. https://doi.org/10.1007/s10661-007-0103-7

    Article  CAS  Google Scholar 

  12. Francesconi K, Lenanton RCJ (1992) Mercury contamination in a semi-enclosed marine embayment: organic and inorganic mercury content of biota, and factors influencing mercury levels in fish. Mar Environ Res 33:189–212. https://doi.org/10.1016/0141-1136(92)90148-F

    Article  CAS  Google Scholar 

  13. Frías-Espericueta MG, Izaguirre-Fierro G, Valenzuela-Quiñonez F, Osuna-López JI, Voltolina D, López-López G, Muy-Rangel MD, Rubio-Castro W (2007) Metal content of the Gulf of California blue shrimp Litopenaeus stylirostris (Stimpson). Bull Environ Contam Toxicol 79:214–217. https://doi.org/10.1007/s00128-007-9165-z

    Article  CAS  Google Scholar 

  14. Frías-Espericueta MG, Abad-Rosales SM, Aguilar-Juárez M, Osuna-López JI, Izaguirre-Fierro G, Voltolina D (2011) Los metales y la camaronicultura en México. Hidrobiológica 21:217–228

    Google Scholar 

  15. Frías-Espericueta MG, Ramos-Magaña BY, Ruelas-Inzunza J, Soto-Jiménez MF, Escobar-Sánchez O, Aguilar-Juárez M, Izaguirre-Fierro G, Osuna-Martínez CC, Voltolina D (2016) Mercury and selenium concentrations in marine shrimps of NW Mexico: health risk assessment. Environ Monit Assess 188:269. https://doi.org/10.1007/s10661-016-5645-0

    Article  CAS  Google Scholar 

  16. Hosseini M, Nabavi SMB, Parsa Y, Ardashir RA (2014) Mercury accumulation in selected tissues of shrimp Penaeus merguiensis from Musa estuary, Persian Gulf: variations related to sex, size and season. Environ Monit Assess 188:629. https://doi.org/10.1007/s10661-014-3793-7

    CAS  Article  Google Scholar 

  17. Keteles KA, Fleeger JW (2001) The contribution of ecdysis to the fate of copper, zinc and cadmium in grass shrimp, Palaemonetes pugio Holthius. Mar Pollut Bull 42:1397–1402. https://doi.org/10.1016/S0025-326X(01)00172-2

    Article  CAS  Google Scholar 

  18. Marchetti C (2013) Role of calcium channels in heavy metal toxicity. ISRN Toxicol 2013:1–9. https://doi.org/10.1155/2013/184360

    Article  CAS  Google Scholar 

  19. Martelli A, Rousselet E, Dycke C, Bouron A, Moulis JM (2006) Cadmium toxicity in animal cells by interference with essential metals. Biochimie 88:1807–1814. https://doi.org/10.1016/j.biochi.2006.05.013

    Article  CAS  Google Scholar 

  20. Monikh FA, Maryamabadi A, Savari A, Ghanemi K (2015) Heavy metals concentration in sediment, shrimp and two fish species from the northwest Persian Gulf. Toxicol Ind Health 31:554–565. https://doi.org/10.1177/0748233713475498

    Article  CAS  Google Scholar 

  21. Moody JR, Lindstrom RM (1977) Selection and cleaning of plastic containers for storage of trace element samples. Anal Chem 49:2264–2267. https://doi.org/10.1021/ac50022a039

    Article  CAS  Google Scholar 

  22. Newman MC, Unger MA (2002) Fundamentals of ecotoxicology. Lewis Publishers, Boca Raton

    Google Scholar 

  23. Páez-Osuna F, Ruiz-Fernández C (1995a) Trace metals in the Mexican shrimp Penaeus vannamei from estuarine and marine environments. Environ Pollut 87:243–247. https://doi.org/10.1016/0269-7491(94)P2612-D

    Article  Google Scholar 

  24. Páez-Osuna F, Ruiz-Fernández C (1995b) Comparative bioaccumulation of trace metals in Penaeus stylirostris in estuarine and coastal environments. Estuarine Coast Shelf Sci 40:35–44. https://doi.org/10.1016/0272-7714(95)90011-X

    Article  Google Scholar 

  25. Páez-Osuna F, Tron-Mayen L (1995) Distribution of heavy metals in tissues of the shrimp Penaeus californiensis from the Northwest coast of Mexico. Bull Environ Contam Toxicol 55:209–215. https://doi.org/10.1007/BF00203011

    Article  Google Scholar 

  26. Roesijadi G, Robinson E (1994) Metal regulation in aquatic animals: mechanisms of uptake, accumulation and release. In: Malins DC, Ostrander GK (eds) Aquatic toxicology. Lewis Publishers, London, pp 387–420

    Google Scholar 

  27. Segovia-Zavala JA, Delgadillo-Hinojosa F, Muñoz-Barbosa A, Gutiérrez-Galindo EA, Vidal-Talamantes R (2004) Cadmium and silver in Mytilus californianus transplanted to an anthropogenic influenced and coastal upwelling areas in the Mexican Northeastern Pacific. Mar Pollut Bull 48:458–464. https://doi.org/10.1016/j.marpolbul.2003.08.022

    Article  CAS  Google Scholar 

  28. Smith KL, Guentzel JL (2010) Mercury concentrations and omega-3 fatty acids in fish and shrimp: preferential consumption for maximum health benefits. Mar Pollut Bull 60:1615–1618. https://doi.org/10.1016/j.marpolbul.2010.06.045

    Article  CAS  Google Scholar 

  29. Soto-Jiménez MF, Páez-Osuna F, Scelfo G, Hibdon S, Franks R, Aggarawl J, Flegal AR (2008) Lead pollution in subtropical ecosystems on the SE Gulf of California coast: a study of concentrations and isotopic composition. Mar Environ Res 66:451–458. https://doi.org/10.1016/j.marenvres.2008.07.009

    Article  CAS  Google Scholar 

  30. Zar JH (2010) Biostatistical Analysis. Pearson, Upper Saddle River

    Google Scholar 

Download references

Acknowledgements

This work was supported by PROFAPI 2015/103, Programa para el Desarrollo Profesional Docente (Grant No. CANE year 3) and Consejo Nacional de Ciencia y Tecnología INFRA 2012-01-188029 and INFRA-230061 Grants. Authors thank Y. Montaño-Ley for his help and D. Fischer for editorial services.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. G. Delgado-Alvarez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

D. Voltolina—deceased.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Osuna-Martínez, C.C., Frías-Espericueta, M.G., Ramos-Magaña, B.Y. et al. Assessing Human Health Risks Associated with Consumption of Metal Content in Shrimp from NW Mexico. Bull Environ Contam Toxicol 102, 861–866 (2019). https://doi.org/10.1007/s00128-019-02598-x

Download citation

Keywords

  • Hazard quotient
  • Shrimp
  • Metal
  • Risk assessment