Skip to main content

Enzymatic and Histological Biomarkers in Ucides cordatus (Crustacea, Decapoda) in an Industrial Port on the North Coast of Brazil

Abstract

The aim of this study was to evaluate enzymatic (glutathione-S-transferase and catalase) and histological (branchial lesions) biomarkers in Ucides cordatus (Crustacea, Decapoda) from an industrial port region on the north coast of Brazil. The crabs were collected in two distinct locations of the Brazilian coast: A1 = region under influence of port activities; and A2 = low-impacted area. We performed histological examination in the gills and glutathione-S-transferase (GST) and catalase activity in the hepatopancreas. The most frequent and severe histological lesions were found in A1, especially rupture of pilaster cells and lamellar collapse. Catalase activity did not show a pattern capable of differentiating the two analyzed areas. On the other hand, GST activity presented a more pronounced response in the crabs of the port area (p < 0.05), coinciding with the most frequent branchial lesions in these same organisms. These results suggest that the species is susceptible to environmental stress, once alterations at different organizational levels were verified.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abdel-Khalek AA, Elhaddad E, Mamdouh S et al (2018) The chronic exposure to discharges of sabal drain induces oxidative stress and histopathological alterations in Oreochromis niloticus. Bull Environ Contam Toxicol 0:1–7. https://doi.org/10.1007/s00128-018-2366-9

    CAS  Article  Google Scholar 

  2. Aly W, Williams ID, Hudson MD (2014) Limitations of metallothioneins in common cockles (Cerastoderma edule) and sponges (Haliclona oculata) as biomarkers of metal contamination in a semi-enclosed coastal area. Sci Total Environ 473–474:391–397. https://doi.org/10.1016/j.scitotenv.2013.11.136

    Article  CAS  Google Scholar 

  3. Amaral R, Alfredin P (2010) Modelação Hidrossedimentológica no Canal de Acesso do Complexo Portuário do Maranhão. Rev Bras Recur Hídricos 15:5–14. https://doi.org/10.21168/rbrh.v15n2.p5-14

    Article  Google Scholar 

  4. Ameur WB, El Megdiche Y, Lapuente J et al (2015) Oxidative stress, genotoxicity and histopathology biomarker responses in Mugil cephalus and Dicentrarchus labrax gill exposed to persistent pollutants. A field study in the Bizerte Lagoon: Tunisia. Chemosphere 135:67–74. https://doi.org/10.1016/j.chemosphere.2015.02.050

    Article  CAS  Google Scholar 

  5. Andrade TSOM (2016) Biomarcadores em caranguejo uçá (Ucides cordatus) para monitoramento ambiental em áreas portuárias. Universidade Estadual do Maranhão

  6. Arockia Vasanthi L, Muruganandam A, Revathi P et al (2014) The application of histo-cytopathological biomarkers in the mud crab Scylla serrata (Forskal) to assess heavy metal toxicity in Pulicat Lake, Chennai. Mar Pollut Bull 81:85–93. https://doi.org/10.1016/j.marpolbul.2014.02.016

    Article  CAS  Google Scholar 

  7. Burggren WW, McMahon BR (1988) Biology of the Land Crabs. Cambridge University Press, Cambridge

    Book  Google Scholar 

  8. Burton JE, Dorociak IR, Schwedler TE, Rice CD (2002) Circulating lysozyme and hepatic CYP1A activities during a chronic dietary exposure to tributyltin (TBT) and 3,3′,4,4′,5-pentachlorobiphenyl (PCB-126) mixtures in channel catfish, Ictalurus punctatus. J Toxicol Environ Heal - Part A 65:589–602. https://doi.org/10.1080/152873902317349745

    Article  CAS  Google Scholar 

  9. Camargo MMP, Martinez CBR (2006) Biochemical and physiological biomarkers in Prochilodus lineatus submitted to in situ tests in an urban stream in southern Brazil. Environ Toxicol Pharmacol 21:61–69. https://doi.org/10.1016/j.etap.2005.07.016

    Article  CAS  Google Scholar 

  10. Carvalho-Neta RNF, Abreu-Silva AL (2013) Glutathione S-transferase as biomarker in Sciades herzbergii (Siluriformes: Ariidae) for environmental monitoring: the case study of São Marcos Bay, Maranhão, Brazil. Lat Am J Aquat 41:217–225. https://doi.org/10.3856/vol41-issue2-fulltext-2

    Article  Google Scholar 

  11. Carvalho-Neta RNF, Torres AR, Abreu-Silva AL (2012) Biomarkers in catfish Sciades herzbergii (Teleostei: Ariidae) from polluted and non-polluted areas (São Marcos’ Bay, Northeastern Brazil). Appl Biochem Biotechnol 166:1314–1327. https://doi.org/10.1007/s12010-011-9519-1

    Article  CAS  Google Scholar 

  12. Carvalho-Neta RNF, Pinheiro-Sousa DB, Almeida Z da S de et al (2014) A histopathological and biometric comparison between catfish (Pisces, Ariidae) from a harbor and a protected area, Brazil. Aquat Biosyst 10:1–8. https://doi.org/10.1186/s12999-014-0012-5

    Article  Google Scholar 

  13. Carvalho-Neta RNF, Torres AR, Sousa DBP et al (2016) In situ assessment of two catfish species (pisces, Ariidae) to evaluate pollution in a harbor. p 100007. https://doi.org/10.1063/1.4968699

  14. Castro ACL (2001) Diversidade da assembléia de peixes em igarapés do estuário do rio Paciência (Ma–Brasil). Atlântica 23:39–46. https://doi.org/10.1590/S1676-06032008000200012

    Article  Google Scholar 

  15. Contreras-Vergara CA, Harris-Valle C, Sotelo-Mundo RR, Yepiz-Plascencia G (2004) A mu-class glutathione-S-transferase from the marine shrimp Litopenaeus vannamei: molecular cloning and active-site structural modeling. J Biochem Mol Toxicol 18:245–252. https://doi.org/10.1002/jbt.20033

    Article  CAS  Google Scholar 

  16. Cutrim AST, Sousa LKS, Oliveira VM, Almeida ZS (2016) Estrutura da comunidade de poliquetas em manguezais do Golfão Maranhense. In: Almeida ZS, Oliveira VM (eds) Avaliação Ambiental no Complexo Portuário do Itaqui. EDUEMA, São Luís, pp 145–165

    Google Scholar 

  17. Depledge MH (1994) The rational basis for the use of biomarkers as ecotoxicological tools. In: Fossi MC, Leonzio C (eds) Non-destructive biomarkers in vertebrates. Lewis, Boca Raton, pp 261–285

    Google Scholar 

  18. Freire MM, Santos VG, Ginuino ISF, Arias ARL (2008) Biomarcadores na avaliação da saúde ambiental dos ecossistemas aquáticos. Oecol Bras 12:347–354. https://doi.org/10.4257/oeco.2008.1203.01

    Article  Google Scholar 

  19. Ighodaro OM, Akinloye OA (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex J Me 54:287–293. https://doi.org/10.1016/j.ajme.2017.09.001

    Article  Google Scholar 

  20. Instituto Nacional de Meteorologia (INMET) (2017) Normal Climatológica do Brasil 1961–1990. http://www.inmet.gov.br/portal/index.php?r=clima/normaisClimatologicas. Accessed 28 Nov 2017

  21. Jena KB, Verlecar XN, Chainy GBN (2009) Application of oxidative stress indices in natural populations of Perna viridis as biomarker of environmental pollution. Mar Pollut Bull 58:107–113. https://doi.org/10.1016/j.marpolbul.2008.08.018

    Article  CAS  Google Scholar 

  22. Keen JH, Habig WH, Jakoby WB (1976) Mechanism for several activities of the glutathione-S-transferase. J Biol Chem 251:6183–6188

    CAS  Google Scholar 

  23. Krifka S, Spagnuolo G, Schmalz G, Schweikl H (2013) A review of adaptive mechanisms in cell responses towards oxidative stress caused by dental resin monomers. Biomaterials 34:4555–4563. https://doi.org/10.1016/j.biomaterials.2013.03.019

    Article  CAS  Google Scholar 

  24. Lacroix C, Richard G, Seguineau C et al (2015) Active and passive biomonitoring suggest metabolic adaptation in blue mussels (Mytilus spp.) chronically exposed to a moderate contamination in Brest harbor (France). Aquat Toxicol 162:126–137. https://doi.org/10.1016/j.aquatox.2015.03.008

    Article  CAS  Google Scholar 

  25. Lam PK, Gray JS (2003) The use of biomarkers in environmental monitoring programmes. Mar Pollut Bull 46:182–186. https://doi.org/10.1016/S0025-326X(02)00449-6

    Article  CAS  Google Scholar 

  26. Macêdo SJ, Montes MJF, Lins IC (2002) Características abióticas da área. In: Barros HM, Eskinazi-Leça H, Macêdo SJ, Lima T (eds) Gerenciamento participativo de estuários e manguezais. Ed. Universitária da UFPE, Recife, p 252

    Google Scholar 

  27. Maharajan A, Narayanasamy Y, Ganapiriya V, Shanmugavel K (2015) Histological alterations of a combination of Chlorpyrifos and Cypermethrin (Nurocombi) insecticide in the fresh water crab, Paratelphusa jacquemontii (Rathbun). J Basic Appl Zool 72:104–112. https://doi.org/10.1016/j.jobaz.2015.08.002

    Article  CAS  Google Scholar 

  28. Martín-Díaz ML, Blasco J, Sales D, DelValls TA (2008) Field validation of a battery of biomarkers to assess sediment quality in Spanish ports. Environ Pollut 151:631–640. https://doi.org/10.1016/j.envpol.2007.03.019

    Article  CAS  Google Scholar 

  29. Moschino V, Del Negro P, Vittor C, Da Ros L (2016) Biomonitoring of a polluted coastal area (Bay of Muggia, Northern Adriatic Sea): a five-year study using transplanted mussels. Ecotoxicol Environ Saf 128:1–10. https://doi.org/10.1016/j.ecoenv.2016.02.006

    Article  CAS  Google Scholar 

  30. Moureaux C, Simon J, Mannaerts G et al (2011) Effects of field contamination by metals (Cd, Cu, Pb, Zn) on biometry and mechanics of echinoderm ossicles. Aquat Toxicol 105:698–707. https://doi.org/10.1016/j.aquatox.2011.09.007

    Article  CAS  Google Scholar 

  31. Negro CL (2015) Histopathological effects of endosulfan to hepatopancreas, gills and ovary of the freshwater crab Zilchiopsis collastinensis (Decapoda: Trichodactylidae). Ecotoxicol Environ Saf 113:87–94. https://doi.org/10.1016/j.ecoenv.2014.11.025

    Article  CAS  Google Scholar 

  32. Negro CL, Collins P (2017) Histopathological effects of chlorpyrifos on the gills, hepatopancreas and gonads of the freshwater crab Zilchiopsis collastinensis. Persistent effects after exposure. Ecotoxicol Environ Saf 140:116–122. https://doi.org/10.1016/j.ecoenv.2017.02.030

    Article  CAS  Google Scholar 

  33. Oliveira-Ribeiro CA, Narciso MF (2014) Histopathological markers in fish health assessment. In: Almeida EA, Oliveira-Ribeiro CA (eds) Pollution and fish health in tropical ecosystems. CRC Press, Boca Raton, pp 206–242

    Google Scholar 

  34. Olson KR (1991) Vasculature of the fish gill: anatomical correlates of physiological functions. J Electron Microsc Tech 19:389–405. https://doi.org/10.1002/jemt.1060190402

    Article  CAS  Google Scholar 

  35. Ozkan D, Dagdeviren M, Katalay S et al (2017) Multi-biomarker responses after exposure to pollution in the Mediterranean Mussels (Mytilus galloprovincialis L.) in the Aegean Coast of Turkey. Bull Environ Contam Toxicol 98:46–52. https://doi.org/10.1007/s00128-016-1988-z

    Article  CAS  Google Scholar 

  36. Paital B, Chainy GBN (2013) Seasonal variability of antioxidant biomarkers in mud crabs (Scylla serrata). Ecotoxicol Environ Saf 87: 33–41. https://doi.org/10.1016/j.ecoenv.2012.10.006

    Article  CAS  Google Scholar 

  37. Pinheiro MAA, Fiscarelli AG (2001) Manual de Apoio á Fiscalização - Caranguejo-Uçá. Itajai

  38. Pinheiro-Sousa DB, Almeida ZS de, Carvalho-Neta RNF (2013) Integrated analysis of two biomarkers in Sciades herzbergii (Ariidae, Siluriformes), to assess the environmental impact at São Marcos’ Bay, Maranhao, Brazil. Lat Am J Aquat Res 41:305–312. https://doi.org/10.3856/vol41-issue2-fulltext-9

    Article  Google Scholar 

  39. Rebelo M, de F, Rodriguez, Santos EM, Ansaldo EA M (2000) Histopathological changes in gills of the estuarine crab Chasmagnathus granulata (Crustacea-Decapoda) following acute exposure to ammonia. Comp Biochem Physiol Part C 125:157–164. https://doi.org/10.1016/S0742-8413(99)00093-6

    Article  Google Scholar 

  40. Rocha da CHS (2017) Bioacumulação de metais e presença de metalotioneína no caranguejo-uçá, Ucides cordatus (Linnaeus, 1763). Universidade Federal do Maranhão

  41. Romano N, Zeng C (2012) Osmoregulation in decapod crustaceans: implications to aquaculture productivity, methods for potential improvement and interactions with elevated ammonia exposure. Aquaculture 334(1):12–23. https://doi.org/10.1016/j.aquaculture.2011.12.035

    Article  CAS  Google Scholar 

  42. Santana MS, Yamamoto FY, Sandrini-Neto L et al (2018) Diffuse sources of contamination in freshwater fish: detecting effects through active biomonitoring and multi-biomarker approaches. Ecotoxicol Environ Saf 149:173–181. https://doi.org/10.1016/j.ecoenv.2017.11.036

    Article  CAS  Google Scholar 

  43. Santos RM, Weber L, Souza VL et al (2016) Effects of water-soluble fraction of petroleum on growth and prey consumption of juvenile Hoplias aff. malabaricus (Osteichthyes: Erythrinidae). Braz J Biol 76:10–17. https://doi.org/10.1590/1519-6984.06714

    Article  CAS  Google Scholar 

  44. Silva AC, França NS, Moreira EG (2016) Teor metálico em um manguezal sob influência portuária, São Luís, MA. In: Almeida ZS, Oliveira VM (eds) Avaliação Ambiental no Complexo Portuário do Itaqui. EDUEMA, São Luís, pp 167–195

    Google Scholar 

  45. Sousa DBP, Almeida ZS, Carvalho-Neta RNF (2013) Biomarcadores histológicos em duas espécies de bagres estuarinos da Costa Maranhense, Brasil. Arq Bras Med Vet Zootec 65:369–376. https://doi.org/10.1590/S0102-09352013000200011

    Article  Google Scholar 

  46. Sousa LKS, Cutrim AST, Oliveira VM, Almeida ZS (2016) Poliquetas como indicadores da qualidade ambiental em manguezais do Golfão Maranhense, Brasil. In: Almeida ZS, Oliveira VM (eds) Avaliação Ambiental no Complexo Portuário do Itaqui. EDUEMA, São Luís, pp 11–33

    Google Scholar 

  47. Tagliari KC, Cecchini R, Rocha JAV, Vargas VMF (2004) Mutagenicity of sediment and biomarkers of oxidative stress in fish from aquatic environments under the influence of tanneries. Mutat Res 561:101–117. https://doi.org/10.1016/j.mrgentox.2004.04.001

    Article  CAS  Google Scholar 

  48. United States Environmental Protection Agency: U.S.EPA (2007) SW-846 Test Method 3051: microwave assisted acid digestion of sediments, sludges, soils, and oils. https://www.epa.gov/hw-sw846/sw-846-test-method-3051a-microwave-assisted-acid-digestion-sediments-sludges-soils-and-oils. Accessed 21 Dec 2017

  49. Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf 64:178–189. https://doi.org/10.1016/j.ecoenv.2005.03.013

    Article  CAS  Google Scholar 

  50. Ventura EC, Gaelzer LR, Zanette J et al (2002) Biochemical indicators of contaminant exposure in spotted pigfish (Orthopristis ruber) caught at three bays of Rio de Janeiro coast. Mar Environ Res 54:775–779. https://doi.org/10.1016/S0141-1136(02)00137-X

    Article  CAS  Google Scholar 

  51. Vieira RHSF, De Lima EA, Sousa DBR et al (2004) Vibrio spp. and Salmonella spp., presence and susceptibility in crabs Ucides cordatus. Rev Inst Med Trop Sao Paulo 46:179–182. https://doi.org/10.1590/S0036-46652004000400001

    Article  Google Scholar 

  52. Welsh JE, King PA, MacCarthy E (2013) Pathological and physiological effects of nicking on brown crab (Cancer pagurus) in the Irish crustacean fishery. J Invertebr Pathol 112:49–56. https://doi.org/10.1016/j.jip.2012.08.006

    Article  CAS  Google Scholar 

  53. Winkaler EU, Silva ADG, Galindo HC, Martinez CBDR (2008) Biomarcadores histológicos e fisiológicos para o monitoramento da saúde de peixes de ribeirões de Londrina, Estado do Paraná. Acta Sci Biol Sci 23:507–514. https://doi.org/10.4025/actascibiolsci.v23i0.2708

    Article  Google Scholar 

  54. Zanette J, Monserrat JM, Bianchini A (2006) Biochemical biomarkers in gills of mangrove oyster Crassostrea rhizophorae from three Brazilian estuaries. Comp Biochem Physiol 143:187–195. https://doi.org/10.1016/j.cbpc.2006.02.001

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the research team of the Laboratory of Biomarkers in Aquatic Organisms (LABOAq) of the State University of Maranhão, for the support in the biological analyzes and the Foundation of Support to the Research and the Scientific and Technological Development of Maranhão (FAPEMA), for the financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Suelen Rosana Sampaio de Oliveira.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, S.R.S., Batista, W.S., Sousa, J.B.M. et al. Enzymatic and Histological Biomarkers in Ucides cordatus (Crustacea, Decapoda) in an Industrial Port on the North Coast of Brazil. Bull Environ Contam Toxicol 102, 802–810 (2019). https://doi.org/10.1007/s00128-019-02594-1

Download citation

Keywords

  • Glutathione-S-transferase
  • Catalase
  • Port region
  • Uça crab