Skip to main content
Log in

Enantioselective Oxidative Stress Induced by S- and Rac-metolachlor in Wheat (Triticum aestivum L.) Seedlings

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The unfounded use of chiral pesticides has caused widespread concern. In this study, the enantioselective effects of S- and racemic (Rac)-metolachlor on the oxidative stress of wheat seedlings was determined based on physiological and gene transcription differences. Growth inhibition increased with increasing concentrations of tested metolachlor, and S-metolachlor had a stronger inhibitory effect than did Rac-metolachlor. Root growth was also significantly inhibited, but no enantioselective effects from the tested concentrations of the metolachlor enantiomers were observed. At a concentration of 5 mg L−1, the maximal fresh weight inhibition reached 63.7% and 53.8% for S-metolachlor and Rac-metolachlor, respectively. In response to the S-metolachlor treatment, the maximum level of superoxide anions and malondialdehyde (MDA) increased to 1.73 and 2.55 times that in response to the control treatment, both of which were greater than those in response to the Rac-metolachlor treatment. The activity of superoxide dismutase (SOD) also increased in response to the S-metolachlor treatment, but the activity of peroxidase (POD) decreased. Real-time polymerase chain reaction (PCR) revealed that, compared with the Rac-metolachlor treatment, the S-metolachlor treatment attenuated the expression of several antioxidant genes. Together, these results demonstrate that S-metolachlor has a greater effect than does Rac-metolachlor on wheat seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asad M, Lavoie M, Song H, Jin Y, Fu Z, Qian H (2017) Interaction of chiral herbicides with soil microorganisms, algae and vascular plants. Sci Total Environ 580:1287–1299

    Article  CAS  Google Scholar 

  • Biczak R (2017) Changes in growth and physiological parameters of spring barley and common radish under the influence of 1-butyl-2,3-dimethylimidazolium tetrafluoroborate. Plant Physiol Biochem 115:259–268

    Article  CAS  Google Scholar 

  • Buser H, Poiger T, Müller M (2000) Changed enantiomer composition of metolachlor in surface water following the introduction of the enantiomerically enriched product to the market. Environ Sci Technol 34(13):2690–2696

    Article  CAS  Google Scholar 

  • Chen Z, Gallie D (2006) Dehydroascorbate reductase affects leaf growth, development, and function. Plant Physiol 142(2):775–787

    Article  CAS  Google Scholar 

  • Chen S, Li X, Lavoie M, Jin Y, Xu J, Fu Z, Qian H (2017) Diclofop-methyl affects microbial rhizosphere community and induces systemic acquired resistance in rice. J Environ Sci 51:352–360

    Article  Google Scholar 

  • Delcour I, Spanoghe P, Uyttendaele M (2015) Literature review: impact of climate change on pesticide use. Food Res Int 68:7–15

    Article  Google Scholar 

  • Fan H, Liu H, Dong Y, Chen C, Wang Z, Guo J, Du S (2019) Growth inhibition and oxidative stress caused by four ionic liquids in Scenedesmus obliquus: role of cations and anions. Sci Total Environ 651(Pt 1):570–579

    Article  CAS  Google Scholar 

  • Fang S, Tao Y, Zhang Y, Kong F, Wang Y (2018) Effects of metalaxyl enantiomers stress on root activity and leaf antioxidant enzyme activities in tobacco seedlings. Chirality 30(4):469–474

    Article  CAS  Google Scholar 

  • Garrison A (2006) Probing the enantioselectivity of chiral pesticides. Environ Sci Technol 40(1):16–23

    Article  Google Scholar 

  • Ke M, Zhu Y, Zhang M, Gumai H, Zhang Z, Xu J, Qian H (2017) Physiological and molecular response of Arabidopsis thaliana to CuO nanoparticle (nCuO) exposure. Bull Environ Contam Toxicol 99, 713–718

    Google Scholar 

  • Ke M, Qu Q, Peijnenburg W, Li X, Zhang M, Zhang Z, Lu T, Pan X, Qian H (2018) Phytotoxic effects of silver nanoparticles and silver ions to Arabidopsis thaliana as revealed by analysis of molecular responses and of metabolic pathways. Sci Total Environ 644:1070–1079

    Article  CAS  Google Scholar 

  • Kumar M, Trivedi N, Reddy C, Jha B (2011) Toxic effects of imidazolium ionic liquids on the green seaweed Ulva lactuca: oxidative stress and DNA damage. Chem Res Toxicol 24(11):1882–1890

    Article  CAS  Google Scholar 

  • Liu H, Xiong M (2009) Comparative toxicity of racemic metolachlor and s-metolachlor to Chlorella pyrenoidosa. Aquat Toxicol 93(2–3):100–106

    Article  CAS  Google Scholar 

  • Liu H, Ye W, Zhan X, Liu W (2006) A comparative study of rac- and s-metolachlor toxicity to Daphnia magna. Ecotoxicol Environ Saf 63(3):451–455

    Article  CAS  Google Scholar 

  • Liu W, Ye J, Jin M (2009) Enantioselective phytoeffects of chiral pesticides. J Agric Food Chem 57(6):2087–2095

    Article  CAS  Google Scholar 

  • Liu H, Huang R, Xie F, Zhang S, Shi J (2012a) Enantioselective phytotoxicity of metolachlor against maize and rice roots. J Hazard Mater 217–218(3):330–337

    Article  CAS  Google Scholar 

  • Liu H, Xiong M, Tian B (2012b) Comparative phytotoxicity of rac-metolachlor and s-metolachlor on rice seedlings. J Environ Sci Health B 47(5):410–419

    Article  CAS  Google Scholar 

  • Liu T, Zhu L, Wang J, Wang J, Xie H (2015) The genotoxic and cytotoxic effects of 1-butyl-3-methylimidazolium chloride in soil on Vicia faba seedlings. J Hazard Mater 285:27–36

    Article  CAS  Google Scholar 

  • Liu H, Xia Y, Cai W, Zhang Y, Zhang X, Du S (2017) Enantioselective oxidative stress and oxidative damage caused by Rac- and S-metolachlor to Scenedesmus obliquus. Chemosphere 173:22–30

    Article  CAS  Google Scholar 

  • Lu T, Ke M, Peijnenburg M, Zhu Y, Zhang M, Sun L, Fu Z, Qian H (2018a) Investigation of rhizospheric microbial communities in wheat, barley, and two rice varieties at the seedling stage. J Agric Food Chem 66:2645–2653

    Article  CAS  Google Scholar 

  • Lu T, Zhu Y, Xu J, Ke M, Zhang M, Tan C, Fu Z, Qian H (2018b) Evaluation of the toxic response induced by azoxystrobin in the non-target green alga Chlorella pyrenoidosa. Environ Pollut 234:379–388

    Article  CAS  Google Scholar 

  • Lu T, Ke M, Lavoie M, Jin Y, Fan X, Zhang Z, Fu Z, Sun L, Gillings M, Peñuelas J, Qian H, Zhu YG (2018c) Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome 6:231

    Article  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van B (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498

    Article  CAS  Google Scholar 

  • Qi Y, Liu D, Zhao W, Liu C, Zhou Z, Wang P (2015) Enantioselective phytotoxicity and bioacitivity of the enantiomers of the herbicide napropamide. Pestic Biochem Physiol 125:38–44

    Article  CAS  Google Scholar 

  • Qian H, Chen W, Li J, Wang J, Zhou Z, Liu W, Fu Z (2009a) The effect of exogenous nitric oxide on alleviating herbicide damage in Chlorella vulgaris. Aquat Toxicol 92(4):250–257

    Article  CAS  Google Scholar 

  • Qian H, Hu H, Mao Y, Ma J, Zhang A, Liu W, Fu Z (2009b) Enantioselective phytotoxicity of the herbicide imazethapyr in rice. Chemosphere 76(7):885–892

    Article  CAS  Google Scholar 

  • Qian H, Lu T, Peng X, Han X, Fu Z, Liu W (2011) Enantioselective phytotoxicity of the herbicide imazethapyr on the response of the antioxidant system and starch metabolism in Arabidopsis thaliana. Plos ONE 6(5), e19451

  • Qian H, Wang R, Chen J, Ding H, Yong W, Songlin R, Fu Z (2012) Analysis of enantioselective biochemical, physiological, and transcriptional effects of the chiral herbicide diclofop methyl on rice seedlings. J Agric Food Chem 60(22):5515–5523

    Article  CAS  Google Scholar 

  • Qian H, Han X, Zhang Q, Sun Z, Sun L, Fu Z (2013) Imazethapyr enantioselectively affects chlorophyll synthesis and photosynthesis in Arabidopsis thaliana. J Agric Food Chem 61(6):1172–1178

    Article  CAS  Google Scholar 

  • Qian H, Lu H, Ding H, Lavoie M, Li Y, Liu W, Fu Z (2015) Analyzing Arabidopsis thaliana root proteome provides insights into the molecular bases of enantioselective imazethapyr toxicity. Sci Rep 5:11975

    Article  Google Scholar 

  • Qian H, Zhu K, Lu H, Lavoie M, Chen S, Zhou Z, Deng Z, Chen J, Fu Z (2016) Contrasting silver nanoparticle toxicity and detoxification strategies in Microcystis aeruginosa and Chlorella vulgaris: new insights from proteomic and physiological analyses. Sci Total Environ 572:1213–1221

    Article  CAS  Google Scholar 

  • Rachoski M, Gazquez A, Calzadilla P, Bezus R, Rodriguez A, Ruiz O, Menendez A, Maiale S (2015) Chlorophyll fluorescence and lipid peroxidation changes in rice somaclonal lines subjected to salt stress. Acta Physiol Plant 37(6):1–12

    Article  CAS  Google Scholar 

  • Rice C, McCarty G, Bialek-Kalinski K, Zabetakis K, Torrents A, Hapeman C (2016) Analysis of metolachlor ethane sulfonic acid (MESA) chirality in groundwater: a tool for dating groundwater movement in agricultural settings. Sci Total Environ 560–561:36–43

    Article  CAS  Google Scholar 

  • Rubio M, Bustos-Sanmamed P, Clemente M, Becana M (2009) Effects of salt stress on the expression of antioxidant genes and proteins in the model legume Lotus japonicus. New Phytol 181(4):851–859

    Article  CAS  Google Scholar 

  • Salah S, Yajing G, Dongdong C, Jie L, Aamir N, Qijuan H, Weimin H, Mingyu N, Jin H (2015) Seed priming with polyethylene glycol regulating the physiological and molecular mechanism in rice (Oryza sativa L.) under nano-ZnO stress. Sci Rep 5:14278

    Article  CAS  Google Scholar 

  • Skipsey M, Davis B, Edwards R (2005) Diversification in substrate usage by glutathione synthetases from soya bean (Glycine max), wheat (Triticum aestivum) and maize (Zea mays). Biochem J 391(Pt 3):567–574

    Article  CAS  Google Scholar 

  • Song H, Lavoie M, Fan X, Tan H, Liu G, Xu P, Fu Z, Paerl H, Qian H (2017) Allelopathic interactions of linoleic acid and nitric oxide increase the competitive ability of Microcystis aeruginosa. ISME J 11(8):1865–1876

    Article  CAS  Google Scholar 

  • Sun C, Chen S, Jin Y, Song H, Ruan S, Fu Z, Asad M, Qian H (2016) Effects of the herbicide imazethapyr on photosynthesis in PGR5- and NDH-deficient Arabidopsis thaliana at the biochemical, transcriptomic, and proteomic levels. J Agric Food Chem 64(22):4497–4504

    Article  CAS  Google Scholar 

  • Wen Y, Chen H, Shen C, Zhao M, Liu W (2011) Enantioselectivity tuning of chiral herbicide dichlorprop by copper: roles of reactive oxygen species. Environ Sci Technol 45(11):4778–4784

    Article  CAS  Google Scholar 

  • Zhan X, Liu H, Miao Y, Liu W (2006) A comparative study of rac- and s-metolachlor on some activities and metabolism of silkworm, Bombyx mori L. Pestic. Biochem Physiol 85(3):133–138

    CAS  Google Scholar 

  • Zhang B, Li X, Chen D, Wang J (2013) Effects of 1-octyl-3-methylimidazolium bromide on the antioxidant system of Lemna minor. Protoplasma 250(1):103–110

    Article  CAS  Google Scholar 

  • Zhang Z, Ke M, Qu Q, Peijnenburg W, Lu T, Zhang Q, Ye Y, Xu P, Du B, Sun L, Qian H (2018) Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response. Environ Pollut 239:689–697

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (21777144, 21577128), the Chinese Academy of Science (CAS) Pioneer Hundred Talents Program (H.F. Qian) and the Xinjiang Uighur Autonomous Region Talent Project (H.F. Qian).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Q., Ke, M., Ye, Y. et al. Enantioselective Oxidative Stress Induced by S- and Rac-metolachlor in Wheat (Triticum aestivum L.) Seedlings. Bull Environ Contam Toxicol 102, 439–445 (2019). https://doi.org/10.1007/s00128-019-02565-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-019-02565-6

Keywords

Navigation