Skip to main content

Advertisement

Log in

Mercury–Organic Matter Interactions in Soils and Sediments: Angel or Devil?

  • Focused Review
  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Many studies have suggested that organic matter (OM) substantially reduces the bioavailability and risks of mercury (Hg) in soils and sediments; however, recent reports have supported that OM greatly accelerates Hg methylation and increases the risks of Hg exposure. This study aims to summarize the interactions between Hg and OM in soils and sediments and improve our understanding of the effects of OM on Hg methylation. The results show that OM characteristics, promotion of the activity of Hg-methylating microbial communities, and the microbial availability of Hg accounted for the acceleration of Hg methylation which increases the risk of Hg exposure. These three key aspects were driven by multiple factors, including the types and content of OM, Hg speciation, desorption and dissolution kinetics and environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker A, Spencer RGM (2004) Characterization of dissolved orgnic matter from source to sea using fluorescence and absorbance spectroscopy. Sci Total Environ 333:217–232

    Article  CAS  Google Scholar 

  • Bloom NS (1992) On the chemical form of mercury in edible fish and marine invertebrate tissue. Can J Fish Aquat Sci 49(5):1010–1017

    Article  CAS  Google Scholar 

  • Bravo AG, Bouchet S, Tolu J et al (2017) Molecular composition of organic matter controls methylHg formation in boreal lakes. Nat Commun 8:14255

    Article  CAS  Google Scholar 

  • Chiasson-Gould SA, Blais JM et al (2014) Dissolved organic matter kinetically controls mercury bioavailability to bacteria. Environ Sci Technol 48:3153–3161

    Article  CAS  Google Scholar 

  • Correia RRS, Guimaraes JRD (2017) Mercury methylation and sulfate reduction rates in mangrove sediments, Rio de Janeiro, Brazil: the role of different microorganism consortia. Chemosphere 167:438–443

    Article  CAS  Google Scholar 

  • Eklof K, Bishop K, Bertilsson S et al (2018) Formation of Hg methylation hotspots as a consequence of forestry operations. Sci Total Environ 613:1069–1078

    Article  CAS  Google Scholar 

  • Eklöf K, Lidskog R, Bishop K (2016) Managing Swedish forestry’s impact on Hg in fish: defining the impact and mitigation measures. Ambio 45:163–174

    Article  Google Scholar 

  • French TD, Houben AJ, Desforges JPW et al (2014) Dissolved organic carbon thresholds affect mercury bioaccumulation in Arctic Lakes. Environ Sci Technol 48:3162–3168

    Article  CAS  Google Scholar 

  • Frohne T, Rinklebe J, Langer U et al (2012) Biogeochemical factors affecting Hg methylation rate in two contaminated floodplain soils. Biogeosciences 9:493–507

    Article  CAS  Google Scholar 

  • Gerbig CA, Kim CS, Stegemeier JP et al (2011) Formation of nanocolloidal metacinnabar in mercury-DOM-sulfide systems. Environ Sci Technol 45:9180–9187

    Article  CAS  Google Scholar 

  • Graham AM, Aiken GR, Gilmour CC (2012) Dissolved organic matter enhances microbial Hg methylation under sulfidic conditions. Environ Sci Technol 46:2715–2723

    Article  CAS  Google Scholar 

  • Graham AM, Aiken GR, Gilmour CC (2013) Effect of dissolved organic matter source and character on microbial Hg methylation in Hg-S-DOM solutions. Environ Sci Technol 47:5746–5754

    Article  CAS  Google Scholar 

  • Graham AM, Cameron-Burr KT, Hajic HA et al (2017) Sulfurization of dissolved organic matter increases Hg-sulfide-dissolved organic matter bioavailability to a Hg-methylating bacterium. Environ Sci Technol 51:9080–9088

    Article  CAS  Google Scholar 

  • Hammerschmidt CR, Fitzgerald WF (2010) Iron-mediated photochemical decomposition of methylHg in an Arctic Alaskan Lake. Environ Sci Technol 44:6138–6143

    Article  CAS  Google Scholar 

  • Hammerschmidt CR, Fitzgerald WF, Balcom PH et al (2008) Organic matter and sulfide inhibit methylHg production in sediments of New York/New Jersey Harbor. Mar Chem 109:165–182

    Article  CAS  Google Scholar 

  • Hang XS, Gang FQ, Chen YD et al (2018) Evaluation of mercury uptake and distribution in rice (Oryza sativa L.). Bull Environ Contam Toxicol 100:451–456

    Article  CAS  Google Scholar 

  • Jeremiason JD, Portner JC, Aiken GR et al (2015) Photoreduction of Hg(ii) and photodemethylation of methylHg: the key role of thiol sites on dissolved OM. Environ Sci Proc Impacts 17:1892–1903

    Article  CAS  Google Scholar 

  • Jonsson S, Skyllberg U, Nilsson MB et al (2012) Mercury methylation rates for geochemically relevant Hg-II species in sediments. Environ Sci Technol 46:11653–11659

    Article  CAS  Google Scholar 

  • Klapstein SJ, O’Driscoll NJ (2018) Methylmercury biogeochemistry in freshwater ecosystems: a review focusing on DOM and Photodemethylation. Bull Environ Contam Toxicol 100:14–25

    Article  CAS  Google Scholar 

  • Kronberg RM, Jiskra M, Wiederhold JG et al (2016) Methyl mercury formation in hillslope soils of boreal forests: the role of forest harvest and anaerobic microbes. Environ Sci Technol 50:9177–9186

    Article  CAS  Google Scholar 

  • Liang P, Gao XF, You QZ et al (2016) Role of mariculture in the loading and speciation of mercury at the coast of the East China Sea. Environ Pollut 218:1037–1044

    Article  CAS  Google Scholar 

  • Liem-Nguyen V, Jonsson S, Skyllberg U et al (2016) Effects of nutrient loading and mercury chemical speciation on the formation and degradation of methylHg in estuarine sediment. Environ Sci Technol 50:6983–6990

    Article  CAS  Google Scholar 

  • Liem-Nguyen V, Skyllberg U, Bjorn E (2017) Thermodynamic modeling of the solubility and chemical speciation of mercury and methylHg driven by organic thiols and micromolar sulfide concentrations in Boreal wetland soils. Environ Sci Technol 51:3678–3686

    Article  CAS  Google Scholar 

  • Liu YR, Wang JJ, Zheng YM et al (2014) Patterns of bacterial diversity along a long-term mercury-contaminated gradient in the paddy soils. Microb Ecol 68:575–583

    Article  CAS  Google Scholar 

  • Liu YR, Dong JX, Han LL et al (2016) Influence of rice straw amendment on Hg methylation and nitrification in paddy soils. Environ Pollut 209:53–59

    Article  CAS  Google Scholar 

  • Ma L, Zhong H, Wu YG (2015) Effects of metal-soil contact time on the extraction of mercury from soils. Bull Environ Contam Toxicol 94:399–406

    Article  CAS  Google Scholar 

  • Marvin-DiPasquale M, Windham-Myers L, Agee JL et al (2014) MethylHg production in sediment from agricultural and non-agricultural wetlands in the Yolo Bypass, California, USA. Sci Total Environ 484:288–299

    Article  CAS  Google Scholar 

  • Mazrui NM, Jonsson S, Thota S et al (2016) Enhanced availability of Hg bound to dissolved organic matter for methylation in marine sediments. Geochim Cosmochim Ac 194:153–162

    Article  CAS  Google Scholar 

  • Meng B, Feng X, Qiu G et al (2016) The impacts of organic matter on the distribution and methylation of Hg in a hydroelectric reservoir in Wujiang River, Southwest China. Environ Toxicol Chem 35:191–199

    Article  CAS  Google Scholar 

  • Miller CL, Mason RP, Gilmour CC et al (2009) Influence of dissolved organic matter on the complexation of Hg under sulfidic conditions. Environ Toxicol Chem 26:624–633

    Article  Google Scholar 

  • Moreau JW, Gionfriddo CM, Krabbenhoft DP et al (2015) The effect of natural organic matter on mercury methylation by desulfobulbus propionicus 1pr3. Front Microbiol 6:1389

    Article  Google Scholar 

  • Ndungu K, Schaanning M, Braaten HFV (2016) Effects of organic matter addition on methylmercury formation in capped and uncapped marine sediments. Water Res 103:401–407

    Article  CAS  Google Scholar 

  • Parks JM, Johs A, Bridou R et al (2013) The genetic basis for bacterial mercury methylation. Science 339:1332–1335

    Article  CAS  Google Scholar 

  • Qian Y, Yin X, Lin H et al (2014) Why dissolved organic matter enhances photodegradation of methylHg. Environ Sci Technol Lett 1:426–431

    Article  CAS  Google Scholar 

  • Rajaee M, Obiri S, Green A et al (2015) Integrated assessment of artisanal and small-scale gold mining in Ghana-Part 2: natural sciences review. Int J Environ Res Public Health 12:8971–9011

    Article  CAS  Google Scholar 

  • Rothenberg SE, Feng X (2012) Mercury cycling in a flooded rice paddy. J Geophys Res 117:1–16

    Article  CAS  Google Scholar 

  • Rothenberg SE, Windham-Myers L, Creswell JE (2014) Rice methylHg exposure and mitigation: a comprehensive review. Environ Res 133:407–423

    Article  CAS  Google Scholar 

  • Schartup AT, Mason RP, Balcom PH et al (2013) MethylHg production in estuarine sediments: role of orgainc matter. Environ Sci Technol 47:695–700

    Article  CAS  Google Scholar 

  • Shu R, Dang F, Zhong H (2016a) Effects of incorporating differently-treated rice straw on phytoavailability of methylHg in soil. Chemosphere 145:457–463

    Article  CAS  Google Scholar 

  • Shu R, Wang YJ, Zhong H (2016b) Biochar amendment reduced methylHg accumulation in rice plants. J Hazard Mater 313:1–8

    Article  CAS  Google Scholar 

  • Skyllberg U (2010) Mercury biogeochemistry in soils and sediments. Dev Soil Sci 34:379–410

    CAS  Google Scholar 

  • Tai C, Li Y, Yin Y et al (2014) MethylHg photodegradation in surface water of the Florida Everglades: importance of dissolved organic matter-methylHg complexation. Environ Sci Technol 48:7333–7340

    Article  CAS  Google Scholar 

  • Tossell JA (1998) Theoretical study of the photodecomposition of methyl Hg complexes. J Phys Chem A 102:3587–3591

    Article  CAS  Google Scholar 

  • Windham-Myers L, Fleck JA, Ackerman JT et al (2014a) Mercury cycling in agricultural and managed wetlands: a synthesis of methylHg production, hydrologic export, and bioaccumulation from an integrated field study. Sci Total Environ 484:221–231

    Article  CAS  Google Scholar 

  • Windham-Myers L, Marvin-DiPasquale M, Stricker AC et al (2014b) Mercury cycling in agricultural and managed wetlands of California, USA: experimental evidence of vegetation-driven changes in sediment biogeochemistry and methylHg production. Sci Total Environ 484:300–307

    Article  CAS  Google Scholar 

  • Windham-Myers L, Marvin-Dipasquale M, Kakouros E et al (2014c) Mercury cycling in agricultural and managed wetlands of California, USA: seasonal influences of vegetation on Hg methylation, storage, and transport. Sci Total Environ 484:308–318

    Article  CAS  Google Scholar 

  • Yin D, Wang Y, Jiang T et al (2018) MethylHg production in soil in the water-level-fluctuating zone of the Three Gorges Reservoir, China: the key role of low-molecular-weight organic acids. Environ Pollut 235:186–196

    Article  CAS  Google Scholar 

  • You R, Liang L, Qin CQ et al (2016) Effect of low molecular weight organic acids on the chemical speciation and activity of mercury in the soils of the water-level-fluctuating zone of the three Gorges reservoir. Huanjing Kexue 37:173–179

    CAS  Google Scholar 

  • Yu XJ, Li HX, Pan K et al (2012) Mercury distribution, speciation and bioavailability in sediments from the Pearl River Estuary, Southern China. Mar Pollut Bull 64:1699–1704

    Article  CAS  Google Scholar 

  • Zhang D, Yin Y, Li Y et al (2017) Critical role of natural organic matter in photodegradation of methylHg in water: molecular weight and interactive effects with other environmental factors. Sci Total Environ 578:535–541

    Article  CAS  Google Scholar 

  • Zhang W, Cao FF, Yang LY et al (2018a) Distribution, fractionation and risk assessment of Hg in surficial sediments of Nansi Lake, China. Environ Geochem Health 40:115–125

    Article  CAS  Google Scholar 

  • Zhang Y, Liu YR, Lei P et al (2018b) Biochar and nitrate reduce risk of methylHg in soils under straw amendment. Sci Total Environ 619:384–390

    Article  CAS  Google Scholar 

  • Zhao L, Chen H, Lu X et al (2017) Contrasting effects of dissolved organic matter on mercury methylation by geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132. Environ Sci Technol 51:10468–10475

    Article  CAS  Google Scholar 

  • Zhao JY, Ye ZH, Zhong H (2018) Rice root exudates affect microbial methylHg production in paddy soils. Environ Pollut. https://doi.org/10.1016/j.envpol.2018.07.072

    Article  Google Scholar 

  • Zhong SQ, Qiu GL, Feng XB et al (2018) Sulfur and iron influence the transformation and accumulation of Hg and methylHg in the soil-rice system. J Soil Sediment 18:578–585

    Article  CAS  Google Scholar 

  • Zhu DW, Zhong H (2015) Potential bioavailability of Hg in humus-coated clay minerals. J Environ Sci 36:48–55

    Article  CAS  Google Scholar 

  • Zhu HK, Zhong H, Evans D et al (2015a) Effects of rice residue incorporation on the speciation, potential bioavailability and risk of Hg in a contaminated paddy soil. J Hazard Mater 293:64–71

    Article  CAS  Google Scholar 

  • Zhu HK, Zhong H, Fu FJ et al (2015b) Incorporation of decomposed crop straw affects potential phytoavailability of nercury in a mining-contaminated farming soil. Bull Environ Contam Toxicol 95:254–259

    Article  CAS  Google Scholar 

  • Zhu HK, Zhong H, Wu JL (2016) Incorporating rice residues into paddy soils affects methylHg accumulation in rice. Chemosphere 152:259–264

    Article  CAS  Google Scholar 

  • Zhu W, Song Y, Adediran GA et al (2018) Mercury transformations in resuspended contaminated sediment controlled by redox conditions, chemical speciation and sources of OM. Geochim Cosmochim Acta 220:158–179

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 41472124), PetroChina Innovation Foundation (Grant Nos. 2015D-5006-0210 and 2016D-5007-0702), Natural Science Foundation of Hubei Province (Grant Nos. 2016CFB178 and 2016CFB601), the Yangtze Youth Fund (Grant No. 2016cqr14) and China Scholarship Council (Grant Nos. 201708420108 and 201708420260).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Lin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 31 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M., Tian, L., Braaten, H.F.V. et al. Mercury–Organic Matter Interactions in Soils and Sediments: Angel or Devil?. Bull Environ Contam Toxicol 102, 621–627 (2019). https://doi.org/10.1007/s00128-018-2523-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-018-2523-1

Keywords

Navigation