Arsenic Bioaccumulation and Biotransformation in Clams (Asaphis violascens) Exposed to Inorganic Arsenic: Effects of Species and Concentrations

Abstract

High arsenic (As) concentrations are found in marine clams, usually as less-toxic arsenobetaine (AsB). However, when clams were exposed to elevated As concentrations in the environments, As species distribution within them may be altered. This study aimed to determine As bioaccumulation and biotransformation in marine clams (Asaphis violascens) along As concentration gradients for 10 days. Nine treatments of dissolved As exposure [control, 1, 3 (low), 10, 20 (high) mg/L As(III) and As(V)] were performed. Clams could biotransform low-levels of inorganic As efficiently, while they had lower biotransformation efficiencies when exposed to high As concentrations. AsB decreased with increasing As(III) and As(V) concentrations, while dimethylarsinic acid exhibited as a predominant As species in 3 mg/L exposure treatments. These results suggested that As methylation, synthesis and/or degradation of AsB should be affected by exposure concentrations. Therefore, these toxic As species within clams may cause a potential toxicological hazard to human beings.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Burguera M, Burguera J (1997) Analytical methodology for speciation of arsenic in environmental and biological samples. Talanta 44:1581–1604

    Article  CAS  Google Scholar 

  2. Clowes LA, Francesconi KA (2004) Uptake and elimination of arsenobetaine by the mussel Mytilus edulisis related to salinity. Comp Biochem Physiol C 137:35–42

    Article  Google Scholar 

  3. Devesa V, Macho ML, Jalon M, Urieta I, Ociel M, Suner MA, Lopez F, Velez D, Montoro R (2001) Arsenic in cooked seafood products: study on the effect of cooking on total and inorganic arsenic content. J Agric Food Chem 49:4132–4140

    Article  CAS  Google Scholar 

  4. Fattorini D, Regoli F (2004) Arsenic speciation in tissues of the mediterranean polychaete Sabella spallanzanii. Environ Toxicol Chem 23:1881–1887

    Article  CAS  Google Scholar 

  5. Francesconi KA (2010) Arsenic species in seafood: origin and human health implications. Pure Appl Chem 82:373–381

    Article  CAS  Google Scholar 

  6. Francesconi KA, Kuehnelt D (2002) Arsenic compounds in the environment. In: Frankenberger WT (ed) Environmental chemistry of arsenic. Marcel Dekker, New York, pp 51–94

    Google Scholar 

  7. Francesconi KA, Goessler W, Panutrakul S, Irgolic KJ (1998) A novel arsenic containing riboside (arsenosugar) in three species of gastropods. Sci Total Environ 221:139–148

    Article  CAS  Google Scholar 

  8. Gailer J, Lrgolic KJ, Francesconi KA, Edmondsxs JS (1995) Metabolism of arsenic compounds by the blue mussel Mytilus edulis after accumulation from seawater spiked with arsenic compounds. Appl Organomet Chem 9:341–355

    Article  CAS  Google Scholar 

  9. Gebel TW (2001) Genotoxicity of arsenical compounds. Int J Hyg Environ Health 203:249–262

    Article  CAS  Google Scholar 

  10. Geiszinger AE, Goessler W, Francesconi KA (2002) Biotransformation of arsenate to the tetramethylarsonium ion in the marine polychaetes Nereis diversicolor and Nereis virens. Environ Sci Technol 36:2905–2910

    Article  CAS  Google Scholar 

  11. Haderlie EC, Abbott DP (1980) Bivalvia: the clam and allies. In: Morris RH, Abbott DP, Haderlie EC (eds) Intertidal invertebrates of California. Stanford University Press, Stanford, pp 355–411

    Google Scholar 

  12. Hanaoka K, Nakamura O, Ohno H, Tagawa S, Kaise T (1995) Degradation of arsenobetaine to inorganic arsenic by bacteria in seawater. Hydrobiologia 316:75–80

    Article  CAS  Google Scholar 

  13. Hunter DA, Goessler W, Francesconi KA (1998) Uptake of arsenate, trimethylarsine oxide, and arsenobetaine by the shrimp Crangon crangon. Mar Biol 131:543–552

    Article  CAS  Google Scholar 

  14. Jenkins RO, Ritchie AW, Edmonds JS, Goessler W, Molenat N, Kuehnelt D, Harrington CF, Sutton PG (2003) Bacteria degradation of arsenobetaine via dimethylarsinoylacetate. Arch Microbiol 180:142–150

    Article  CAS  Google Scholar 

  15. Kaise T, Sakurai T, Matsubara C, Takadaoikawa N, Hanaoka K (1998) Biotransformation of arsenobetaine to trimethylarsine oxide by marine microorganisms in a gill of clam Meretrix lusoria. Chemosphere 37:443–449

    Article  CAS  Google Scholar 

  16. Kitchin K (2001) Recent advances in arsenic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites. Toxicol Appl Pharmacol 162:249–261

    Article  CAS  Google Scholar 

  17. Klumpp DW (1980) Accumulation of arsenic from water and food by Littorina littoralis and Nucella lapillus. Mar Biol 58:265–274

    Article  CAS  Google Scholar 

  18. Koch I, McPherson K, Smith P, Easton L, Doe KG, Reimer KJ (2007) Arsenic bioaccesibility and speciation in clams and seaweed from a contaminated marine environment. Mar Pollut Bull 54:586–594

    Article  CAS  Google Scholar 

  19. Langston WJ (1983) The behavior of arsenic in selected U.K. estuaries. Can J Fish Aquat Sci 40:143–150

    Article  Google Scholar 

  20. Leonard A (1991) Metals and their compounds in the environment. VCH, New York

    Google Scholar 

  21. Liu C-W, Liang C-P, Lin K-H, Jang C-S, Wang S-W, Huang Y-K, Hsueh Y-M (2007) Bioaccumulation of arsenic compounds in aquacultural clams (Meretrix lusoria) and assessment of potential carcinogenic risks to human health by ingestion. Chemosphere 69:128–134

    Article  CAS  Google Scholar 

  22. Maher W, Butler E (1988) Arsenic in the marine environment. Appl Organomet Chem 2:191–214

    Article  CAS  Google Scholar 

  23. Munoz O, Devesa V, Suner MA, Velez D, Montoro R, Urieta I, Macho ML, Jalon M (2000) Total and inorganic arsenic in fresh and processed fish products. J Agric Food Chem 48:4369–4376

    Article  CAS  Google Scholar 

  24. Price RE, Pichler T (2005) Distribution, speciation and bioavailability of arsenic in a shallow-water submarine hydrothermal system, PNG, Tutum Bay, Ambitle Island. Chem Geol 224:122–135

    Article  CAS  Google Scholar 

  25. Reimer KJ, Koch I, Cullen WR (2010) Organoarsenicals, distribution and transformation in the environment. Met Ions Life Sci 7:165–229

    Article  CAS  Google Scholar 

  26. Sloth JJ, Julshamn K (2008) Survey of total and inorganic arsenic content in blue mussels (Mytilus edulis L.) from Norwegian fiords: revelation of unusual high levels of inorganic arsenic. Agric Food Chem 58:1269–1273

    Article  CAS  Google Scholar 

  27. Sörös C, Bodó ET, Morabito PFR (2003) The potential of arsenic speciation in molluscs for environmental monitoring. Anal Bioanal Chem 377:25–31

    Article  CAS  Google Scholar 

  28. Súñer MA, Devesa V, Clemente MJ, Vélez D, Montoro R, Urieta I, Jalón M, Macho ML (2002) Organoarsenical species contents in fresh and processed seafood products. J Agric Food Chem 50:924–932

    Article  CAS  Google Scholar 

  29. Whaley-Martin KJ, Koch I, Moriarty M, Reimer K (2012) Arsenic speciation in blue mussels (Mytilus edulis) along a highly contaminated arsenic gradient. Environ Sci Technol 46:3110–3118

    Article  CAS  Google Scholar 

  30. Yusof AM, Ikhsan ZB, Wood AKH (1994) The speciation of arsenic in seawater and marine species. J Radioanal Nucl Chem 179:277–283

    Article  CAS  Google Scholar 

  31. Zhang W, Huang LM, Wang WX (2012) Biotransformation and detoxification of inorganic arsenic in a marine juvenile fish Terapon jarbua after waterborne and dietborne exposure. J Hazard Mater 221–222:162–169

    Article  CAS  Google Scholar 

  32. Zhang W, Wang W-X, Zhang L (2013) Arsenic speciation and spatial and interspecies differences of metal concentrations in mollusks and crustaceans from a South China estuary. Ecotoxicology 22:671–682

    Article  CAS  Google Scholar 

  33. Zhang W, Guo ZQ, Zhou YY, Liu HX, Zhang L (2015) Biotransformation and detoxification of inorganic arsenic in Bombay oyster Saccostrea cucullata. Aquat Toxicol 158:33–40

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their constructive suggestions. This work was supported by National Key Research and Development Project (2017YFC0506302), National Natural Science Foundation of China (21876180, 41876133); Guangzhou Science and Technology Plan Projects (201710010173).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Li Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Guo, Z., Wu, Y. et al. Arsenic Bioaccumulation and Biotransformation in Clams (Asaphis violascens) Exposed to Inorganic Arsenic: Effects of Species and Concentrations. Bull Environ Contam Toxicol 103, 114–119 (2019). https://doi.org/10.1007/s00128-018-2493-3

Download citation

Keywords

  • Arsenic
  • Bioaccumulation
  • Biotransformation
  • Waterborne exposure
  • Clam