Skip to main content

Concentrations of Mercury and Other Inorganic Ions in Wet Precipitation Collected from a Mountain Mining Zone and an Urban Area in Central Mexico

Abstract

We measured and compared mercury (Hg) and other ions in rainwater collected in San Joaquin (mining zone) and Juriquilla (urban area), central Mexico, from 2009 to 2012. A total of 274 rainwater samples were collected and analyzed for pH, electrical conductivity, \({\text{NO}}_{3}^{ - },\;{\text{SO}}_{4}^{{2 - }},\) Cl, \({\text{NH}}_{4}^{+},\) Na+, K+, Ca2+, Mg2+ and Hg. Mercury concentrations in rainwater varied from 24.21 to 248.89 (x-bar = 86.97 ± 10.77) µg L− 1 in San Joaquin (mining zone) and 11.26 to 176.91 (x-bar = 81.51 ± 10.24) µg L− 1 in Juriquilla (urban area). Rainwater sample were collected over periods 1–3 days, depending upon precipitation frequency. Significant correlations (p < 0.05) were found between \({\text{SO}}_{4}^{{2 - }},\) Cl, \({\text{NO}}_{3}^{ - },\) Na+, K+, Ca2+, Mg2+ and Hg at the San Joaquin site. Significant correlations were obtained between \({\text{SO}}_{4}^{{2 - }},{\text{NO}}_{3}^{ - },\;{\text{NH}}_{4}^{+},\) Na+, K+, Ca2+, Mg2+ and Hg at the Juriquilla site. In order to determine if there were significant differences among each measured parameter in rainwater collected in San Joaquin and Juriquilla, Kruskal–Wallis test was applied to data. We emphasized that the distribution and concentrations of Hg and the studied ions in rainwater samples were affected by atmospheric dust and local meteorological conditions of wind-speed and direction.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. De la Rosa DA, Velasco A, Rosas A, Volke-Sepúlveda T (2006) Total gaseous mercury and volatile organic compounds measurements at five municipal solid waste disposal sites surrounding the Mexico City Metropolitan Area. Atmos Environ 40:2079–2088

    Article  CAS  Google Scholar 

  2. Gray JE, Plumlee GS, Morman SA, Higueras PL, Crock JG, Lowers HA (2010) In vitro studies evaluating leaching of mercury from mine waste calcine using simulated human body fluids. Environ Sci Technol 44:4782–4788

    Article  CAS  Google Scholar 

  3. Hernández Silva G (2009) Mercurio: impacto en el hombre y la naturaleza, al sur de la Sierra Gorda de Querétaro, México. Centro de Geociencias, campus UNAM Juriquilla, Querétaro, p 126

    Google Scholar 

  4. Higueras P, Llanos W, García ME, Mollán R, Serrano C (2012) Mercury vapor emissions from the Ingenios in Potosí (Bolivia). J Geochem Explor 116:1–7

    Article  CAS  Google Scholar 

  5. Kumar R, Rani A, Singh SP, Kumari KM, Srivasttava SS (2002) A long study on chemical composition of rainwater at Dayalbagh, a suburban site of semiarid region. J Atmos Chem 41:265–279

    Article  CAS  Google Scholar 

  6. Lamborg CH, Fitzgerald WF, O’Donnell J, Torgersen T (2002) A non-steady-state compartment model of global-scale mercury biochemistry with interhemispheric atmospheric gradients. Geochim Cosmochim Acta 66:1105–1118

    Article  CAS  Google Scholar 

  7. Martínez-Trinidad S (2013) Comportamiento del mercurio total en los sistemas terrestres del distrito minero de San Joaquín, Qro. Aplicación de modelos geoestadísticos y de regresión con árboles de decisión. Tesis de Doctorado. Universidad Nacional Autónoma de México, Juriquilla, Qro

    Google Scholar 

  8. Martínez S, Hernández G, Ramírez M, Martínez J, Solorio G, Solís S, Garcia R (2013) Total mercury in terrestrial systems (air–soil–plant–water) at the mining region of San Joaquin, Querétaro, México. Rev Geofís Int 52(1):43–58

    Google Scholar 

  9. Martínez Reyes J (2009) La mineralización de mercurio en la Sierra Gorda, región de San Joaquín, Qro. México. Marco geológico. In: Mercurio, el Hombre y la Naturaleza al sur de la Sierra Gorda de Querétaro, México; Memorias de los Trabajos realizados del 2006 al 2008. CAC Campus UNAM-Juriquilla, p 5–15

  10. Migliavacca D, Teixeira EC, Wiegand F, Machado ACM, Sanchez J (2005) Atmospheric precipitation and chemical composition of an urban site, Guaiba Hydrographic Basin, Brazil. Atmos Environ 39:1826–1844

    Article  CAS  Google Scholar 

  11. Rangel GM (2017) Análisis de mercurio en aerosoles atmosféricos de una zona urbana y una semi-rural. Tesis de Maestría, Universidad Nacional Autónoma de México

  12. Sánchez DM, Quejido AJ, Fernández M, Hernández C, Shmid T, Millán R, González M, Aldea M, Martín R, Morante R (2005) Mercury and trace element fractionation in Almaden soils by application of different sequential extraction procedures. Anal Bioanal Chem 381:1507–1513

    Article  CAS  Google Scholar 

  13. Siudek P, Falkowska L, Brodecka A, Kowalski A, Frankowski M, Siepak J (2015) Mercury in precipitation over the coastal zone of the southern Baltic Sea, Poland. Environ Sci Pollut Res Int 22:2546–2557. https://doi.org/10.1007/s11356-014-3537-9

    Article  CAS  Google Scholar 

  14. USEPA (2001) Total mercury in tissue, sludge, sediment, and soil by acid digestión and BrCl oxidation. 821-R-01-013. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  15. USEPA (2002) Method 1631, revision E: mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  16. USEPA (2007) Method 7473, mercury in solids and solutions by thermal decomposition, amalgamation, and atomic absorption spectrophotometry. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  17. Wan Q, Feng X, Lu J, Zheng W, Song X, Li P, Han S, Xu H (2009) Atmospheric mercury in Changbai Mountain area, northeastern China II. The distribution of reactive gaseous mercury and particulate mercury and mercury deposition fluxes. Environ Res 109(6):721–727

    Article  CAS  Google Scholar 

  18. Zhang MY, Wang SJ, Wu FC, Yuan XH, Zhang Y (2007) Chemical compositions of wet precipitation and anthropogenic influences at a developing urban site in south eastern China. Atmos Res 84:311–322

    Article  CAS  Google Scholar 

  19. Zhao M, Xiu G, Qiao T, LI Y, Yu J (2016) Characteristics of haze pollution episodes and analysis of a typical winter haze process in Shanghai. Aerosol Air Qual Res 16:1625–1637. https://doi.org/10.4209/aaqr.2016.01.0049. ISSN 1680-8584 print/2071-1409 online

Download references

Acknowledgements

This work was funded by Grant PAPIIT-UNAM IA101313. We thank Carolina Muñoz, Higicel Dominguez, Manuel García, Wilfrido Gutiérrez, Miguel Mendoza, Miguel A, Flores, Claudio Amescua and José Ramón Hernández for their technical support and assistance with this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. García.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

García, R., Pérez, R., Kotsarenko, A. et al. Concentrations of Mercury and Other Inorganic Ions in Wet Precipitation Collected from a Mountain Mining Zone and an Urban Area in Central Mexico. Bull Environ Contam Toxicol 101, 145–152 (2018). https://doi.org/10.1007/s00128-018-2393-6

Download citation

Keywords

  • Mercury in rainwater
  • Inorganic ions
  • Aerosol
  • Urban
  • Particles
  • Mining zone versus urban area