Skip to main content

Toxicity of Diclofenac: Cadmium Binary Mixtures to Algae Desmodesmus subspicatus Using Normalization Method

Abstract

Algal test using chlorococcal algae Desmodesmus subspicatus was used to determine single acute toxicity of either diclofenac or cadmium and to assess acute toxicity of their binary mixtures. The test confirmed significant acute toxicity of both diclofenac and cadmium; diclofenac with acute toxicity ErC50 60.44 ± 0.20 mg/L and cadmium with acute toxicity ErC50 2.14 ± 0.02 mg/L. This study of acute toxicity of binary cadmium-diclofenac mixtures confirmed their negative effects on aquatic producers and it also proved influence of the above substances on acute toxicity of their mixtures. Normalization method was applied to predict acute toxicity of binary mixtures composed of chemicals with significantly different acute toxicities. Normalization method used molar ratio (R) of chemicals in binary mixtures as their composition descriptor.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Andersen RA (2005) Algal culturing techniques, 1st edn. Elsevier Academic Press, Cambridge

    Google Scholar 

  2. Caglar S, Aydemir IE, Cankaya M, Kuzucu M, Temel E, Buyukgungor O (2014) Four diclofenac complexes with cobalt(II) and nickel(II) ions: synthesis, spectroscopic properties, thermal decompositions, crystal structures, and carbonic anhydrase activities. J Coord Chem 67(6):969–985

    Article  CAS  Google Scholar 

  3. Carballa M, Omil F, Lema JM (2005) Removal of cosmetic ingredients and pharmaceuticals in sewage primary treatment. Water Res 39(19):4790–4796

    Article  CAS  Google Scholar 

  4. Christen V, Hickmann S, Rechenberg B, Fent K (2010) Highly active human pharmaceuticals in aquatic systems: a concept for their identification based on their mode of action. Aquat Toxicol 96(3):167–181

    Article  CAS  Google Scholar 

  5. Cleuvers M (2003) Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol Lett 142(3):185–194

    Article  CAS  Google Scholar 

  6. Cleuvers M (2004) Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotoxicol Environ Saf 59(3):309–315

    Article  CAS  Google Scholar 

  7. Cooper RE, Siewicki CT, Phillips K (2008) Preliminary risk assessment database and risk ranking of pharmaceuticals in the environment. Sci Total Environ 398(1–3):26–33

    Article  CAS  Google Scholar 

  8. Drost W, Matzke M, Backhaus T (2007) Heavy metal toxicity to Lemna minor: studies on the time dependence of growth inhibition and the recovery after exposure. 67(1):36–43

  9. Durán-Alvarez JC, Becerril-Bravo E, Silva-Castro V, Jiménez B, Gibson R (2009) The analysis of a group of acidic pharmaceuticals, carbamazepine, and potential endocrine disrupting compounds in wastewater irrigated soils by gas chromatography–mass spektrometry. Talanta 78(3):1159–1166

    Article  CAS  Google Scholar 

  10. EN ISO 8692 (2012). Water quality—Freshwater algal growth inhibition test with unicellular green algae. https://www.iso.org/standard/54150.html. Accessed 2 Jun 2017

  11. Escher BI, Bramaz N, Eggen RIL, Richter M (2005) In vitro assessment of modes of toxic action of pharmaceuticals in aquatic life. Environ Sci Technol 39(9):3090–3100

    Article  CAS  Google Scholar 

  12. Faust M, Altenburger R, Backhaus T, Blanck H, Boedeker W, Gramatica P, Hamer V, Scholze M, Vighi M, Grimme LH (2003) Joint algal toxicity of 16 dissimilarly acting chemicals is predictable by the concept of independent action. Aquat Toxicol 63(1):43–63.

    Article  CAS  Google Scholar 

  13. Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76(2):122–159

    Article  CAS  Google Scholar 

  14. Ferreira ALG, Loureiro S, Soares AMVM. (2008) Toxicity prediction of Binary combinations of cadmium, carbendazim and low dissolved oxygen on Daphnia magna. Aquat Toxicol 89(1):28–39

    Article  CAS  Google Scholar 

  15. Gibson R, Becerril-Bravo E, Silva-Castro V, Jiménez B (2007) Determination of acidic pharmaceuticals and potential endocrine disrupting compounds in wastewaters and spring waters by selective elution and analysis by gas chromatography–mass spectrometry. J Chromatogr A 1169(1):31–39

    Article  CAS  Google Scholar 

  16. Ginebreda A, Muñoz I, López de Alda M, Brix R, López-Doval J, Barceló D (2009) Environmental risk assessment of pharmaceuticals in rivers: relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat River (NE Spain). Environ Int 36(2):153–162

    Article  CAS  Google Scholar 

  17. Gros M, Petrovic M, Barceló D (2009) Tracing pharmaceutical residues of different therapeutic classes in environmental waters by using liquid chromatography/quadrupole-linear ion trap mass spectrometry and automated library searching. Anal Chem 81(3):898–912

    Article  CAS  Google Scholar 

  18. Heberer T (2002a) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131(1–2):5–17

    Article  CAS  Google Scholar 

  19. Heberer T, Reddersen K, Mechlinski A (2002b) From municipal sewage to drinking water: fate and removal of pharmaceutical residues in the aquatic environment in urban areas. Water Sci Technol 46(3):81–88

    Article  CAS  Google Scholar 

  20. Hernando MD, Mezcua M, Fernández-Alba AR, Barceló D (2006) Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69(2):334–342

    Article  CAS  Google Scholar 

  21. Hughes SR, Kay P, Brown LE (2013) Global synthesis and critical evaluation of pharmaceutical datasets collected from river systems. Environ Sci Technol 47(2):661–677

    Article  CAS  Google Scholar 

  22. Huschek G, Hansen PD, Maurer HH, Krengel D, Kayser A (2004) Environmental risk assessment of medicinal products for human use according to European Commission recommendations. Environ Toxicol 19(3):226–240

    Article  CAS  Google Scholar 

  23. Jonker MJ, Svendsen C, Bedaux JJ, Bongers M, Kammenga JE (2005) Significance testing of synergistic/antagonistic, dose level-dependent, or dose-ratio dependent effects in mixture dose-response analysis. Environ Toxicol Chem 24(10):2701–2713

    Article  CAS  Google Scholar 

  24. Joss A, Keller E, Alder AC, Gobel A, McArdell CS, Ternes T, Siegrist H (2005) Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Res 39(14):3139–3152

    Article  CAS  Google Scholar 

  25. Khetan SK, Collins TJ (2007) Human pharmaceuticals in the aquatic environment: a challenge to green chemistry. Chem Rev 107(6):2319–2364

    Article  CAS  Google Scholar 

  26. Kovala-Demertzi D (1993) Metal complexes of the anti-inflammatory drug sodium [2-[(2,6-dichlorophenyl)amino]phenyl]acetate (diclofenac sodium). Molecular and crystal structure of cadmium diclofenac. Polyhedron 12(11):1361–1370

    Article  CAS  Google Scholar 

  27. Kovala-Demertzi D (2000) Transition metal complexes of diclofenac with potentially interesting anti-inflammatory activity. J Inorg Biochem 79(1–4):153–157

    Article  CAS  Google Scholar 

  28. Kovala-Demertzi D, Hadjikakou SK, Demertzis MA, Deligiannakis Y (1998) Metal ion-drug interactions. Preparation and properties of manganese(II), cobalt(II) and nickel(II) Complexes of diclofenac with potentially interesting anti-inflammatory activity. Behavior in the oxidation of 3,5-di-tert-butyl-o-catechol. J Inorg Biochem 69(4):223–229

    Article  CAS  Google Scholar 

  29. Kümmerer K (2008) Pharmaceuticals in the environment: sources, fate, effects and risks. Springer, Berlin

    Book  Google Scholar 

  30. Lin K (2009) Joint acute toxicity of tributyl phosphate and triphenyl phosphate to Daphnia magna. Environ Chem Lett 7(4):309–312

    Article  CAS  Google Scholar 

  31. Lynch NR, Hoang TC, O´Brien TE (2016) Acute toxicity of binary-metal mixtures of copper, zinc, and nickel to Pimephales Promelas: evidence of more-than-additive effect. Environ Tox Chem 35(2):446–457

    Article  CAS  Google Scholar 

  32. Martínez Bueno MJ, Aguera A, Gómez MJ, Hernando MD, García Reyes JF, Fernández Alba AR (2007) Application of liquid chromatography/quadrupole-linear ion trap mass spectrometry and time-of-flight mass spectrometry to the determination of pharmaceuticals and related contaminants in wastewater. Anal Chem 79(24):9372–9384

    Article  CAS  Google Scholar 

  33. McClellan K, Halden RU (2010) Pharmaceuticals and personal care products in archived US biosolids from the 2001 EPA National Sewage Sludge Survey. Water Res 44(2):658–668

    Article  CAS  Google Scholar 

  34. Megahed AS (2015) Synthesis, spectroscopic and biological study of new cadmium(II) diclofenac pharmaceutical complex. J Chem Bio Phys Sci A 5(3):2311–2318

    CAS  Google Scholar 

  35. Miège C, Choubert JM, Riberio L, Eusebe M, Coquery M (2009) Fate of pharmaceuticals and personal care products in wastewater treatment plants e conception of a database and first results. Environ Pollut 157(5):1721–1726

    Article  CAS  Google Scholar 

  36. OECD TG 201 (2011) Organisation for Economic Co-operation and Development (OECD) Guidelines for the Testing of Chemicals, Sect. 2: effects on Biotic Systems Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test OECD. OECD

  37. Pomati F, Orlandi C, Clerici M, Luciani F, Zuccato E (2008) Effects and interactions in an environmentally relevant mixture of pharmaceuticals. Toxicol Sci 102(1):129–137

    Article  CAS  Google Scholar 

  38. Radjenovic J, Petrovic M, Barceló D (2007) Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor. Anal Bioanal Chem 387(4):1365–1377

    Article  CAS  Google Scholar 

  39. Ribeiro AR, Goncalves VMF, Maia AS, Ribeiro C, Castro PML, Tiritan ME (2015) Dispersive liquid–liquid microextraction and HPLC to analyse fluoxetine and metoprolol enantiomers in wastewaters. Environ Chem Lett 13(2):203–210

    Article  CAS  Google Scholar 

  40. Richardson SD, Ternes TA (2014) Water analysis: emerging contaminants and current issues. Anal Chem 86(6):2813–2848

    Article  CAS  Google Scholar 

  41. Rodriguez-Mozaz S, Weinberg HS (2010) Meeting report: the pharmaceuticals in water—an interdisciplinary approach to a public health challenge. Environ Health Perspect 118(7):1016–1020

    Article  Google Scholar 

  42. Rucki M, Tichý M (2004) Acute toxicity of binary mixture benzene-ethanol and partition coefficient K(ow) of benzene and ethanol. Cent Eur J Public Health 12:S77–S79

    Google Scholar 

  43. Santos JL, Aparicio I, Alonso E (2007) Occurrence and risk assessment of pharmaceutically active compounds in wastewater treatment plants. a case study: Seville City (Spain). Environ Int 33(4):596–601

    Article  CAS  Google Scholar 

  44. Schmidt TS, Clements WH, Mitchell KA, Church SE, Wanty RB, Fey DL, Verplanck PL, San Juan CA (2010) Development of a new toxic unit model for bioassesssemnt of metals in stream. Environ Toxicol Chem 29(11):2432–2442

    Article  CAS  Google Scholar 

  45. Suárez S, Carballa M, Omil F, Lema J (2008) How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters? Rev Environ Sci Biotechnol 7(2):125–138

    Article  CAS  Google Scholar 

  46. Tichý M, Cikrt M, Roth Z, Rucki M (1998) QSAR analysis in mixture toxicity assessment. SAR QSAR Environ Res 9(3–4):155–169

    Article  Google Scholar 

  47. Tichý M, Rucki M, Reitmajer J, Feltl L (2002a) Risk assessment of mixtures: possibility of prediction of interaction between chemicals. Int Arch Occup Environ Health 75 Suppl:S133–S136

    Google Scholar 

  48. Tichý M, Bořek-Dohalský V, Matoušová D, Rucki M, Feltl L, Roth Z (2002b) Prediction of acute toxicity of chemicals in mixtures: worms Tubifex tubifex and gas/liquid distribution. SAR QSAR Environ Res 13(2):261–269

    Article  CAS  Google Scholar 

  49. Tichý M, Hanzlíková I, Rucki M, Pokorná A, Uzlová R, Tumová J (2008) Acute toxicity of binary mixtures: alternative methods, QSAR and mechanisms. Interdiscip Toxicol1(1):15–17

    Article  Google Scholar 

  50. Vieno N, Tuhkanen T, Kronberg L (2007) Elimination of pharmaceuticals in sewage treatment plants in Finland. Water Res 41(5):1001–1012. https://doi.org/10.1016/j.watres.2006.12.017

    Article  CAS  Google Scholar 

  51. Ward TJ, Robinson WE (2005) Evolution of cadmium resistence in Daphnia magna. Environ Toxicol Chem 24(9):2341–2349

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thanks for support provided by the No. FCH-S-18-5331 “Pollution of the environment and possibilities of elimination of contaminants” Project funded by the Faculty of Chemistry (Brno University of Technology), for support of the Faculty of Metallurgy and Materials Engineering within the No. LO1203 “Regional Materials Science and Technology Centre - Feasibility Program” Project, granted by the Ministry of Education, Youth and Sports of the Czech Republic.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Helena Doležalová Weissmannová.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Doležalová Weissmannová, H., Pavlovský, J., Fišerová, L. et al. Toxicity of Diclofenac: Cadmium Binary Mixtures to Algae Desmodesmus subspicatus Using Normalization Method. Bull Environ Contam Toxicol 101, 205–213 (2018). https://doi.org/10.1007/s00128-018-2384-7

Download citation

Keywords

  • Binary mixtures
  • Diclofenac
  • Cadmium
  • Desmodesmus subspicatus
  • Normalization method