Skip to main content

Impacts of a Compound Amendment on Cd Immobilization, Enzyme Activities and Crop Uptake in Acidic Cd-Contaminated Paddy Soils

Abstract

This study assessed the effectiveness of limestone-montmorillonite-rapeseed residue-Si fertilizer compound amendment on the bioavailability and crop uptake of cadmium (Cd) and enzyme activities in acidic paddy soils. Applying the compound amendment at ratios of 1%–3% increased soil pH by 0.1–1.9 units, decreased leaching ratios of soil Cd 4.0%–22%, and decreased exchangeable and carbonated Cd 42%–55% and 27%–49%, respectively. Organic matter-bound Cd increased 47%–62% (p < 0.05). Cadmium concentrations decreased in the roots, culms, leaves, and grains of rice grown in the Cd-contaminated soils by 37%–81%, 18%–73%, 29%–64% and 27%–63%, respectively, (p < 0.05). Catalase and urease activities increased 2.5%–63% and 3.9%–36%, (p < 0.05), respectively. Applying this compound amendment may significantly mitigate soil acidification and decrease the bioavailability and crop uptake of Cd in acidic Cd-contaminated paddy soils.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abad-Valle P, Iglesias-Jiménez E, Álvarez-Ayuso E (2017) A comparative study on the influence of different organic amendments on trace element mobility and microbial functionality of a polluted mine soil. J Environ Manag 188:287–296

    Article  CAS  Google Scholar 

  2. Bandick AK, Dick RP (1999) Field management effects on soil enzyme activities. Soil Biol Biochem 31:1471–1479

    Article  CAS  Google Scholar 

  3. Chavez E, He ZL, Stoffella PJ, Mylavarapu RS, Li YC, Baligar VC (2016) Chemical speciation of cadmium: an approach to evaluate plant-available cadmium in Ecuadorian soils under cacao production. Chemosphere 150:57–62

    Article  CAS  Google Scholar 

  4. Cheng SF, Hseu ZY (2002) In-situ immobilization of cadmium and lead by different amendments in two contaminated soils. Water Air Soil Pollut 140:73–84

    Article  CAS  Google Scholar 

  5. Dermont G, Bergeron M, Mercier G, Richer-Laflèche M (2008) Soil washing for metal removal: a review of physical/chemical technologies and field applications. J Hazard Mater 152:1–31

    Article  CAS  Google Scholar 

  6. Dresler S, Wojcik M, Bednarek W, Hanaka A, Tukiendorf A (2015) The effect of silicon on maize growth under cadmium stress. Russ J Plant Physiol 62:86–92

    Article  CAS  Google Scholar 

  7. Du H, Chen W, Cai P, Rong X, Dai K, Peacock CL, Huang Q (2016) Cd(II) Sorption on montmorillonite-humic acid-bacteria composites. Sci Rep 6:19499

    Article  CAS  Google Scholar 

  8. Farooq MA, Detterbeck A, Clemens S, Dietz KJ (2016) Silicon-induced reversibility of cadmium toxicity in rice. J Exp Bot 67:3573–3585

    Article  CAS  Google Scholar 

  9. Gao Y, Zhou P, Mao L, Zhi Y, Zhang C, Shi W (2010) Effects of plant species coexistence on soil enzyme activities and soil microbial community structure under Cd and Pb combined pollution. J Environ Sci 22:1040–1048

    Article  CAS  Google Scholar 

  10. Garau G, Castaldi P, Santona L, Deiana P, Melis P (2007) Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil. Geoderma 14:47–57

    Article  CAS  Google Scholar 

  11. Gu Y, Wang P, Kong CH (2009) Urease, invertase, dehydrogenase and polyphenoloxidase activities in paddy soil influenced by allelopathic rice variety. Eur J Soil Biol 45:436–441

    Article  CAS  Google Scholar 

  12. Guo G, Zhou Q, Ma LQ (2006) Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review. Environ Monit Assess 116:513–528

    Article  CAS  Google Scholar 

  13. Hamidpour M, Kalbasi M, Afyuni M, Shariatmadari H, Holm PE, Hansen HC (2010) Sorption hysteresis of Cd(II) and Pb(II) on natural zeolite and bentonite. J Hazard Mater 181:686–691

    Article  CAS  Google Scholar 

  14. He YB, Huang DY, Zhu QH, Wang S, Liu SL, He HB, Zhu HH, Xu C (2017) A three-season field study on the in-situ remediation of Cd-contaminated paddy soil using lime, two industrial by-products, and a low-Cd-accumulation rice cultivar. Ecotoxicol Environ Saf 136:135–141

    Article  CAS  Google Scholar 

  15. Hu Y, Cheng H, Tao S (2016) The challenges and solutions for cadmium-contaminated rice in china: a critical review. Environ Int 92–93:515–532

    Article  CAS  Google Scholar 

  16. Huang SH, Yang Y, Li Q, Su Z, Yuang CY, Yang KO (2017) Evaluation of the effects of lime–bassanite–charcoal amendment on the immobilization of cadmium in contaminated soil. Bull Environ Contam Toxicol 98:433–438

    Article  CAS  Google Scholar 

  17. Kirchmann H, Mattsson L, Eriksson J (2009) Trace element concentration in wheat grain: results from the Swedish long-term soil fertility experiments and national monitoring program. Environ Geochem Health 31:561–571

    Article  CAS  Google Scholar 

  18. Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Manag 28:215–225

    Article  CAS  Google Scholar 

  19. Lee SH, Lee JS, Choi YJ, Kim JG (2009) In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere 77:1069–1075

    Article  CAS  Google Scholar 

  20. Lee SS, Lim JE, El-Azeem SA, Choi B, Oh SE, Moon DH, Ok YS (2013) Heavy metal immobilization in soil near abandoned mines using eggshell waste and rapeseed residue. Environ Sci Pollut Res Int 20:1719–1726

    Article  CAS  Google Scholar 

  21. Lestan D, Grcman H, Zupan M, Bacac N (2003) Relationship of soil properties to fractionation of Pb and Zn in soil and their uptake into Plantago lanceolata. Soil Sediment Contam 12:507–522

    Article  CAS  Google Scholar 

  22. Li H, Luo N, Li YW, Cai QY, Li HY, Mo CH, Wong MH (2017a) Cadmium in rice: transport mechanisms, influencing factors, and minimizing measures. Environ Pollut 224:622–630

    Article  CAS  Google Scholar 

  23. Li Y, Pang HD, He LY, Wang Q, Sheng XF (2017b) Cd immobilization and reduced tissue Cd accumulation of rice (Oryza sativa wuyun-23) in the presence of heavy metal-resistant bacteria. Ecotoxicol Environ Saf 138:56–63

    Article  CAS  Google Scholar 

  24. Liu L, Li W, Song W, Guo M (2018) Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci Total Environ 633:206–219

    Article  CAS  Google Scholar 

  25. Madejón E, de Mora AP, Felipe E, Burgos P, Cabrera F (2006) Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation. Environ Pollut 139:40–52

    Article  CAS  Google Scholar 

  26. Querol X, Alastury A, Moreno N, Alvarez-ayuso E, Garía-Sánchez A, Cama J, Ayora C, Simón M (2006) Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash. Chemosphere 62:171–180

    Article  CAS  Google Scholar 

  27. Rizwan M, Ali S, Adrees M, Ibrahim M, Tsang DCW, Zia-Ur-Rehman M, Zahir ZA, Rinklebe J, Tack FMG, Ok YS (2017) A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere 182:90–105

    Article  CAS  Google Scholar 

  28. Shakir SK, Azizullah A, Murad W, Daud MK, Nabeela F, Rahman H, Ur Rehman S, Häder DP (2017) Toxic metal pollution in Pakistan and its possible risks to public health. Rev Environ Contam Toxicol 242:1–60

    CAS  Google Scholar 

  29. Shao JF, Che J, Yamaji N, Shen RF, Ma JF (2017) Silicon reduces cadmium accumulation by suppressing expression of transporter genes involved in cadmium uptake and translocation in rice. J Exp Bot 68:5641–5651

    Article  Google Scholar 

  30. Shen GQ, Cao LK, Lu YT, Hong JB (2005) Influence of phenanthrene on cadmium toxicity to soil enzymes and microbial growth. Environ Sci Pollut Res 12:259–263

    Article  CAS  Google Scholar 

  31. Stepniewska Z, Wolińska A, Ziomek J (2009) Response of soil catalase activity to chromium contamination. J Environ Sci 21:1142–1147

    Article  CAS  Google Scholar 

  32. Sun Y, Sun G, Xu Y, Wang L, Liang X, Lin D, Hu F (2013) Assessment of natural sepiolite on cadmium stabilization, microbial communities, and enzyme activities in acidic soil. Environ Sci Pollut Res Int 20:3290–3299

    Article  CAS  Google Scholar 

  33. Sun YB, Li Y, Xu YM, Liang XF, Wang L (2015) In situ stabilization remediation of cadmium (Cd) and lead (Pb) co-contaminated paddy soil using bentonite. Appl Clay Sci 105–106:200–206

    Article  CAS  Google Scholar 

  34. Tang W, Zhong h, Xiao L, Tan Q, Zeng Q, Wei Z (2017) Inhibitory effects of rice residues amendment on Cd phytoavailability: a matter of Cd-organic matter interactions? Chemosphere 186:227–234

    Article  CAS  Google Scholar 

  35. Tica D, Udovic M, Lestan D (2011) Immobilization of potentially toxic metals using different soil amendments. Chemosphere 85(4):577–583

    Article  CAS  Google Scholar 

  36. Wu PX, Zhang Q, Dai YP, Zhu NW, Dang Z, Li P, Wu JH, Wang XD (2011) Adsorption of Cu(II), Cd(II) and Cr(III) ions from aqueous solutions on humic acid modified Ca-montmorillonite. Geoderma 164:215–219

    Article  CAS  Google Scholar 

  37. Wu YJ, Zhou H, Zou ZJ, Zhu W, Yang WT, Peng PQ, Zeng M, Liao BH (2016) A three-year in-situ study on the persistence of a combined amendment (limestone + sepiolite) for remedying paddy soil polluted with heavy metals. Ecotoxicol Environ Saf 130:163–170

    Article  CAS  Google Scholar 

  38. Xia Q, Peng C, Lamb D, Mallavarapu M, Naidu R, Ng JC (2016) Bioaccessibility of arsenic and cadmium assessed for in vitro bioaccessibility in spiked soils and their interaction during the Unified BARGE Method (UBM) extraction. Chemosphere 147:444–450

    Article  CAS  Google Scholar 

  39. Yang WT, Gu JF, Zou JL, Zhou H, Zeng QR, Liao BH (2016) Impacts of rapeseed dregs on Cd availability in contaminated acid soil and Cd translocation and accumulation in rice plants. Environ Sci Pollut Res Int 23:20853–20861

    Article  CAS  Google Scholar 

  40. Zare AA, Khoshgoftarmanesh AH, Malakouti MJ, Bahrami HA, Chaney RL (2017) Root uptake and shoot accumulation of cadmium by lettuce at various Cd:Zn ratios in nutrient solution. Ecotoxicol Environ Saf 148:441–446

    Article  CAS  Google Scholar 

  41. Zeng F, Ali S, Zhang H, Ouyang Y, Qiu B, Wu F, Zhang G (2011) The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ Pollut 159:84–91

    Article  CAS  Google Scholar 

  42. Zhang C, Wang L, Nie Q, Zhang W, Zhang F (2008) Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice (Oryza sativa L.). Environ Exp Bot 62:300–307

    Article  CAS  Google Scholar 

  43. Zhong H, Wang WX (2006) Influences of aging on the bioavailability of sediment-bound Cd and Zn to deposit-feeding sipunculans and soldier crabs. Environ Toxicol Chem 25:2775–2780

    Article  CAS  Google Scholar 

  44. Zhou YF, Haynes RJ, Naidu R (2012) Use of inorganic and organic wastes for in situ immobilisation of Pb and Zn in a contaminated alkaline soil. Environ Sci Pollut Res Int 19:1260–1270

    Article  CAS  Google Scholar 

  45. Zhou G, Xia X, Wang H, Li LQ, Wang GJ, Zheng SX, Liao SJ (2016) Immobilization of lead by Alishewanella sp. WH16-1 in pot experiments of Pb-contaminated paddy soil. Water Air Soil Pollut 227:339

    Article  CAS  Google Scholar 

  46. Zhu H, Chen C, Xu C, Zhu Q, Huang D (2016) Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China. Environ Pollut 219:99–106

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the Science Research Project of the Science and Technology Department in Hunan Province (2017NK2144 and 2016NK2036), Changsha Municipal Science and Technology Major Project (kq1703010), Opening Foundation of the Hunan Engineering Research Center of Safe and Efficient Utilization of Heavy Metal Contaminated Arable Land, Changsha, 410083, China (TGOP-001) and Hunan Agricultural Science and Technology Innovation Alliance Project (2017LM0305).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhaohui Guo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shan, S., Guo, Z., Lei, P. et al. Impacts of a Compound Amendment on Cd Immobilization, Enzyme Activities and Crop Uptake in Acidic Cd-Contaminated Paddy Soils. Bull Environ Contam Toxicol 101, 243–249 (2018). https://doi.org/10.1007/s00128-018-2379-4

Download citation

Keywords

  • Bioavailability
  • Soil acidification
  • Rice
  • Exchangeable Cd