Skip to main content

Decay of Quinclorac in Acidic Paddy Soil and Risk Evaluation to the Subsequent Crop, Tobacco (Nicotiana tabacum L.)

Abstract

Quinclorac is a selective herbicide commonly used in China to control monocotyledonous weeds in paddy fields. A field experiment was conducted to quantify the environmental behavior of quinclorac in acidic paddy soil under rice (Oryza sativa L.) field conditions, and to evaluate the risk of its residues to the subsequent crop of tobacco (Nicotiana tabacum L.). Rice was sprayed once with quinclorac 50% WP at 562.5, 375.0, or 187.5 g a.i. ha−1 at 7 days after transplanting the seedlings. Decay of quinclorac in paddy field soil followed first-order kinetics, with a half-life of 28.29–30.27 days. At harvest time, 0.090, 0.074 and 0.034 mg kg−1 of quinclorac were found in soils following the above-described treatments, respectively. Leaves of the subsequent crop, tobacco, sown the year after the quinclorac treatments, exhibited different dose-dependent degrees of visible phytotoxicity symptoms.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Chen ZP, Deng JC, Wan SQ, Wang J, Zhan ZS (2007) Detoxication of some chemicals for deformity of tobacco by quinclorac. Ecol Environ Sci 16(2):453–456

    Google Scholar 

  2. Chism WJ, Bingham SW, Shaver RL (1991) Uptake, translocation and metabolism of quinclorac in two grass species. Weed Technol 5(4):771–775

    Article  CAS  Google Scholar 

  3. European Commission (2006) Directorate general health and consumer protection, guidance document on quality control procedures for pesticide residues analyses, SANCO/10232/2006. http://www.ec.europa/food/plant/protection/resources/publications_en.htm. Accessed September 2006

  4. Grossmann K (1998) Quinclorac belongs to a new class of highly selective auxin herbicides. Weed Sci 46(6):707–716

    CAS  Google Scholar 

  5. Grossmann K, Kwiatkowski J (1995) Evidence for a causative role of cyanide, derived from ethylene biosynthesis, in the herbicidal mode of action of quinclorac in barnyard grass. Pestic Biochem Physiol 51(2):150–160

    Article  CAS  Google Scholar 

  6. Grossmann K, Kwiatkowski J (2000) The mechanism of quinclorac selectivity in grasses. Pestic Biochem Physiol 66(2):83–91

    Article  CAS  Google Scholar 

  7. Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KW, Vitousek PM, Zhang FS (2010) Significant acidification in major Chinese croplands. Science 327:1008–1010

    Article  CAS  Google Scholar 

  8. Hill BD, Moyer JR, Inaba DJ, Doran R (1998) Effect of moisture on quinclorac dissipation in Lethbridge soil. Can J Plant Sci 78(4):697–702

    Article  CAS  Google Scholar 

  9. Lamoureux GL, Rusness DG (1995) Quinclorac absorption, translocation, metabolism, and toxicity in leafy spurge (Euphorbia esula). Pestic Biochem Physiol 53(3):210–226

    Article  CAS  Google Scholar 

  10. Lovelace ML, Hoagland RE, Talbert RE, Scherder EF (2009) Influence of simulated quinclorac drift on the accumulation and movement of herbicide in tomato (Lycopersicon esculentum) plants. J Agric Food Chem 57(14):6349–6355

    Article  CAS  Google Scholar 

  11. Miao H, Yang XJ, Cheng DD, Duan C, Feng L, Zhou LJ, Xu HH (2014) Effects of environmental factors on the degradation of quinclorac in soil. J Nanjing Agric Univ 37(4):144–148

    CAS  Google Scholar 

  12. Pinna MV, Pusino A (2012) Direct and indirect photolysis of two quinolinecarboxylic herbicides in aqueous systems. Chemosphere 86(6):655–658

    Article  CAS  Google Scholar 

  13. Resgalla C Jr, Noldin JA, Tamanaha MS, Deschamps FC, Eberhardt DS, Rörig LR (2007) Risk analysis of herbicide quinclorac residues in irrigated rice areas, Santa Catarina, Brazil. Ecotoxicology 16(8):565–571

    Article  CAS  Google Scholar 

  14. Sterling TM (1994) Mechanisms of herbicide absorption across plant membranes and accumulation in plant cells. Weed Sci 42(2):263–276

    CAS  Google Scholar 

  15. Sunohara Y, Shirai S, Wongkantrakorn N, Matsumoto H (2010) Sensitivity and physiological responses of Eleusine indica and Digitaria adscendens to herbicide quinclorac and 2,4-D. Environ Exp Bot 68(2):157–164

    Article  CAS  Google Scholar 

  16. Wang YR, Liu CW, Niu CY, Liu XW, Jiang QY (1996) The dissipation and residue of quinclorac in rice field water, soil and rice plant. Environ Sci 17(1):27–30

    Google Scholar 

  17. Wuerzer B, Berghaus R (1985) Substituted quinolinecarboxylic acid-new elements in herbicide systems. In: Proceedings of the 10th Asian Pacific Weed Science Society Conference, pp 177–184

Download references

Acknowledgements

This work was supported by the Science and Technology Planning Project of Jiangxi Province (No. 20142BBF60049) and China National Tobacco Corporation Jiangxi Branch (No. 201601007). We thank International Science Editing (http://www.internationalscienceediting.com) for editing this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shuqing Wan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhong, Q., Wan, S., Shen, C. et al. Decay of Quinclorac in Acidic Paddy Soil and Risk Evaluation to the Subsequent Crop, Tobacco (Nicotiana tabacum L.). Bull Environ Contam Toxicol 101, 284–287 (2018). https://doi.org/10.1007/s00128-018-2372-y

Download citation

Keywords

  • Quinclorac
  • Residue
  • Phytotoxicity
  • Half-life
  • Rice–tobacco rotation