The Effects of Sediment Classification Pattern on a Water Column Organism, Ceriodaphnia dubia

  • Vivian Silva Lira
  • Cláudia Hitomi Watanabe
  • Marcela Merides Carvalho
  • André Henrique Rosa
  • Renata Fracácio


The sediment compartment stands out because it functions as both a temporary sink of pollutants and a potential source of these elements that may become available to the water column.This study aimed to correlate the concentrations of total metals in the crude sediment and in the interstitial water with the ecotoxicity in the water column using an a modified sediment ecotoxicity test with Ceriodaphnia dubia. The results indicate that the sediment may contribute to the toxicity in the water column and that such toxicity is possibly not related to the metals present. Based on the chemical analysis of the metals, the Canadian Sediment Quality Guidelines (SQGs) would frame the sediment as non-toxic to benthic organisms, but the SQGs have no reference standards for possible effects on nektonic organisms. Due to the complexity of this compartment, it is fundamental to evaluate the interactions of the different pollutants in the system and possible effects on the nektonic organisms.


Sediment Metals Bioavailability Toxicity and reservoir 



The authors are grateful to Fundação de Amparo à Pesquisa do Estado de São Paulo-FAPESP for financial support (Proc. # 2012/14583-5), Suzan da Silva Lessa and Letícia Boschini Fraga Gonçalves for assistance with the laboratory analyses and M. R. Francisco for aid with the statistical analyses.


  1. Alahverdi M, Savabieasfahani M (2012) Metal pollution in seaweed and related sediment of the Persian Gulf, Iran. Bull Environ Contam Toxicol 88:939–945. CrossRefGoogle Scholar
  2. Allaby M (2008) Oxford dictionary of earth sciences, 3rd edn. Oxford University Press, Oxford, p 418Google Scholar
  3. Alsop D, Wood CM (2013) Metal and pharmaceutical mixtures: is ion loss the mechanism underlying acute toxicity and widespread additive toxicity in zebrafish? Aquat Toxicol 140–141:257–267CrossRefGoogle Scholar
  4. Anderson BS, Hunt JW, Phillips BM, Fairey R, Puckett HM, Stephenson M, Taberski K, Newman J, Tjeerdema RS (2001) Influence of sample manipulation on contaminant flux and toxicity at the sediment-water interface. Mar Environ Res 51:191–211CrossRefGoogle Scholar
  5. APHA, AWWA, WEF (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, WashingtonGoogle Scholar
  6. Ayres M, Ayres Junior M, Ayres DL, Santos AS (2007) Bioestat 5.0: Aplicações estatísticas nas áreas das ciências biomédicas. Sociedade Civil Mamirauá. MCT–CNPq Pará, BrasilGoogle Scholar
  7. Beghelli FGS, Santos ACA, Urso-Guimarães MV, Calijuri MC (2012) Relationship between space distribution of the benthic macroinvertebrates community and trophic state in a neotropical reservoir (Itupararanga, Brazil). Biota Neotrop 12(4):114–124CrossRefGoogle Scholar
  8. Beghelli FGS, Pompêo MLM, Páscoli M, Lira VS, Lima R, Moschini-Carlos V (2016) Can a one-sampling campaign produce robust results for water quality monitoring? A case of study in Itupararanga reservoir, SP, Brazil. Acta Limnol Bras. CrossRefGoogle Scholar
  9. Boucher AM, Watzin MC (1999) Toxicity identification evaluation of metal-contaminated sediments using an artificial pore water containing dissolved organic carbons. Environ Toxicol Chem 18:509–518. CrossRefGoogle Scholar
  10. CCME, Canadian Council of Ministers of the Environment (2001a) Canadian sediment quality guidelines for the protection of aquatic life: introduction, updated in Canadian environmental quality guidelines 1999. Winnipeg, Manitoba. Accessed 10 July 2016
  11. CCME, Canadian Council of Ministers of the Environment (2001b) Canadian sediment quality guidelines for the protection of aquatic life: introduction, updated in Canadian environmental quality guidelines 1999. Winnipeg, Manitoba. Accessed 10 July 2016
  12. CCME, Protocol for the Derivation of Canadian Sediment Quality Guidelines for the Protection of Aquatic Life (1995) CCME EPC-98E. Prepared by Environment Canada, guidelines division, technical secretariat of the CCME Task Group on Water Quality Guidelines, Ottawa. Accessed 10 Mar 2017
  13. CETESB - Companhia de Tecnologia de Saneamento Ambiental—Environmental Sanitation Technology Company (2015) Relatório da Qualidade das águas superficiais no estado de São Paulo 2014. São Paulo. Accessed 16 July 2016
  14. Charriau A, Lesven L, Gao Y, Leermakers M, Baeyens W, Ouddane B et al (2011) Trace metal behaviour in riverine sediments: role of organic matter and sulfides. Appl Geochem 26:80–90CrossRefGoogle Scholar
  15. Conceição FT, Sardinha DD, Navarro GRB, Antunes MLP, Angelucci VA (2011) Rainwater chemical composition and annual atmospheric deposition at Alto Sorocaba Basin (SP). Quím Nova 34:610–658CrossRefGoogle Scholar
  16. De Jonge M, Dreesen F, Paepe J, Blust R, Bervoets L (2009) Do acid volatile sulfides (AVS) influence the accumulation of sediment-bound metals to benthic invertebrates under natural field conditions? Environ Sci Technol 43(12):4510–4516. CrossRefGoogle Scholar
  17. EPA US United States Environmental Protection Agency (1992) METHOD 3005A: acid digestion of waters for total recoverable or dissolved metals for analysis by Flaa or ICP spectroscopy, 1st edn. United States Environmental Protection Agency, Washington, DCGoogle Scholar
  18. EPA US United States Environmental Protection Agency (2000) Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates. United States Environmental Protection Agency, Duluth (EPA 600/R-99/064)Google Scholar
  19. EPA US United States Environmental Protection Agency (2002). METHOD 1002: short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organism. United States Environmental Protection Agency, Washington, DCGoogle Scholar
  20. EPA US United States Environmental Protection Agency (2007). METHOD 6010C: Inductively coupled plasma-atomic emission spectrometry, 3 edn. United States Environmental Protection Agency, Washington, DCGoogle Scholar
  21. Fetters KJ, Costello DM, Hammerschmidt CR, Burton GA (2016) Toxicological effects of short-term resuspension of metal-contaminated freshwater and marine sediments. Environ Toxicol Chem 35:676–686. CrossRefGoogle Scholar
  22. Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological Statistics software package for education and data analysis. Paleontol Electron 4(1):9Google Scholar
  23. He Y, Meng W, Xu J, Zhang Y, Liu S, Guo C (2015) Spatial distribution and toxicity assessment of heavy metals in sediments of Liaohe River, northeast China. Environ Sci Pollut Res 22:14960–14970. CrossRefGoogle Scholar
  24. ISO 13320:2009 International Standard (1999) particle size analysis—laser diffraction methods, 1st edn. Beuth, BerlinGoogle Scholar
  25. Kay DP, Newsted JL et al (2008) Passaic river sediment interstitial water phase I toxicity identification evaluation. Chemosphere 70:1737–1747. CrossRefGoogle Scholar
  26. Lari E, Gauthier P, Mohaddes E, Pyle GG (2017) Interactive toxicity of Ni, Zn, Cu, and Cd on at lethal and sub-lethal concentrations. J Hazard Mater 334:21–28. CrossRefGoogle Scholar
  27. Lasier P, Winger P, Bogenrieder K (2000) Toxicity of manganese to Ceriodaphnia dubia and Hyalella azteca. Arch Environ Contam Toxicol 38:298–304. CrossRefGoogle Scholar
  28. Leonard EN, Ankley GT, Hoke RA (1996) Evaluation of metals in marine and freshwater superficial sediments from the environmental monitoring and assessment program relative to proposed sediment quality criteria for metals. Environ Toxicol Chem 15(10):2221–2232CrossRefGoogle Scholar
  29. Lira VS, Moreira IC, Tonello PS, Henriques Vieira AA, Fracácio R (2017) Evaluation of the ecotoxicological effects of Microcystis aeruginosa and Cylindrospermopsis raciborskii on Ceriodaphnia dubia before and after treatment with ultrasound. Water Air Soil Pollut 228:49. CrossRefGoogle Scholar
  30. López P, Dolz J, Arbat M, Armengol J (2012) Physical and chemical characterization of superficial sediment of the Ribarroja Reservoir (River Ebro, NE Spain). Limnetica 31(2):327–340Google Scholar
  31. Luoma SN, Bryan GW (1981) A statistical assessment of the form of trace metals in oxidized estuarine sediments employing chemical extractants. Sci Total Environ 17(2):165–196. CrossRefGoogle Scholar
  32. Luoma SN, Rainbow PS (2008) Metal contamination in aquatic environments: science and lateral management. Cambridge University Press, CambridgeGoogle Scholar
  33. McQueen AD, Kinley CM, Iwinski KJ et al (2016) Effects of acid volatile sulfides (AVS) from Na2S-amended sediment on Hyalella azteca. Water Air Soil Pollut 227:158. CrossRefGoogle Scholar
  34. Nasr SM, Khairy MA, Okbah MA, Solimann F (2014) AVS-SEM relationships and potential bioavailability of trace metals in sediments from the Southeastern Mediterranean sea, Egypt. Chem Ecol 30(1):15–28. CrossRefGoogle Scholar
  35. Norwood WP, Borgmann U, Dixon DG, Wallace A (2003) Effects of metal mix-tures on aquatic biota: a review of observations and methods. Hum Ecol Risk Assess 9:795–811CrossRefGoogle Scholar
  36. Sardinha DS, Bonotto DM, Conceição FT (2010) Weathering rates at Alto Sorocaba basin, Brazil, using U-isotopes and major cations. Environ Earth Sci 61:1025–1036. CrossRefGoogle Scholar
  37. Schubauer-Berigan MK, Dierkes JR, Monson PD, Ankley GT (1993) pH-dependent toxicity of Cd, Cu, Ni, Pb, and Zn to Ceriodaphnia dubia, Pimephales promelas, Hyalella azteca, and Lumbriculus variegatus. Environ Toxicol Chem 12:1261–1266CrossRefGoogle Scholar
  38. Smith WS, Petrere-Jr M (2008) Spatial and temporal patterns and their influence on fish community at Itupararanga Reservoir, Brazil. Rev Biol Trop 56:2005–2020Google Scholar
  39. Souza IS, Araujo GS, Cruz ACF, Fonseca TG, Camargo JBDA., Medeiros GF, Abessa DMS (2016) Using an integrated approach to assess the sediment quality of an estuary from the semi-arid coast of Brazil. Mar Pollut Bull 104(1):70–82. CrossRefGoogle Scholar
  40. Spehar RL, Fiandt JT (1986) Acute and chronic effects of water quality criteria-based metal mixtures on three aquatic species. Environ Toxicol Chem 5:917–931. CrossRefGoogle Scholar
  41. Superville PJ, Prygiel E, Mikkelsen O, Billon G (2015) Dynamic behaviour of trace metals in the Deûle River impacted by recurrent polluted sediment resuspensions: from diel to seasonal evolutions. Sci Total Environ 506–570:585–593. CrossRefGoogle Scholar
  42. Taniwaki RH, Rosa AH, De Lima R, Maruyama CR, Secchin LF, Calijuri MC, Moschini-Carlos V (2013) The influence of soil use and occupation on water quality and genotoxicity in the Itupararanga reservoir (SP, Brazil). Interciência 38(3):164–170Google Scholar
  43. Traudt EM, Ranville JF, Smith SA, Meyer JS (2016) A test of the additivity of acute toxicity of binary-metal mixtures of ni with Cd, Cu, and Zn to Daphnia magna, using the inflection point of the concentration–response curves. Environ Toxicol Chem 35:1843–1851. CrossRefGoogle Scholar
  44. Trindade M (1980) Nutrients in sediments of the Lobo dam (Brotas—Itirapina). Masters dissertation. Federal University of São Carlos, São CarlosGoogle Scholar
  45. Zhuang W, Liu Y, Chen Q, Wang Q, Zhou F (2016) A new index for assessing heavy metal contamination in sediments of the Beijing-Hangzhou Grand Canal (Zaozhuang Segment): a case study. Ecol Ind 69:252–260. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Vivian Silva Lira
    • 1
  • Cláudia Hitomi Watanabe
    • 1
  • Marcela Merides Carvalho
    • 1
  • André Henrique Rosa
    • 1
  • Renata Fracácio
    • 1
  1. 1.Institute of Science and Technology of Sorocaba (ICTS)UNESP - São Paulo State UniversitySorocabaBrazil

Personalised recommendations