Advertisement

Environmental Exposure of Children to Toxic Trace Elements (Hg, Cr, As) in an Urban Area of Yucatan, Mexico: Water, Blood, and Urine Levels

  • F. Arcega-Cabrera
  • L. Fargher
  • M. Quesadas-Rojas
  • R. Moo-Puc
  • I. Oceguera-Vargas
  • E. Noreña-Barroso
  • L. Yáñez-Estrada
  • J. Alvarado
  • L. González
  • N. Pérez-Herrera
  • S. Pérez-Medina
Article

Abstract

Merida is the largest urban center in the Mexican State of Yucatan. Here domestic sewage is deposited in poorly built septic tanks and is not adequately treated. Because of contamination from such waste, water from the top 20 m of the aquifer is unsuitable for human consumption. Given this situation and because children are highly vulnerable to environmental pollution, including exposure to toxic trace elements, this study focused on evaluating the exposure of children to arsenic (As), chromium (Cr), and mercury (Hg) in water. It also evaluated the relationship between the levels of these elements in water and their concentrations in urine and blood. Among the 33 children monitored in the study, arsenic surpassed WHO limits for blood in 37% of the cases, which could result from the ingestion of poultry contaminated with organoarsenic compounds. In the case of WHO limits for Mercury, 65% of the water samples analyzed, 28% of urine samples, and 12% of blood samples exceeded them. Mercury exposure was correlated with biological sex, some lifestyle factors, and the zone in Merida in which children live. These data suggest that the levels of some toxic metals in children may be affected by water source, socioeconomic factors, and individual behavior.

Keywords

Children Arsenic Chromium Mercury Water Merida Mexico 

Notes

Acknowledgements

We wish to thank FOSEC Salud–CONACYT (Project 139738) for funding. We also thank the Secretaría de Educación del Gobierno de Yucatán and the principals of the schools included in the study for the information and support they provided. We also thank the children and their families for providing water and biological samples and for their enthusiastic participation. We thank Fernando Mex Esquivel, and all the medicine, chemistry, and communications students involved in this project for their invaluable help during the sampling campaign, as well as Abigail Rosales Flores for her help in the ethnographic research. We thank Alejandra Martínez Escamilla for project administration, and the reviewers for their insightful remarks that significantly improve the quality of the article.

References

  1. Abernathy CO, Thomas DJ, Calderon RL (2003) Health effects and risk assessment of arsenic. J Nutr 133:1536S–1538SCrossRefGoogle Scholar
  2. Adimado AA, Baah DA (2002) Hg in human blood, urine, hair, nail, and fish from the Ankobra and Tano river basins in Southwestern Ghana. Bull Environ Contam Toxicol 68:339–346CrossRefGoogle Scholar
  3. Agency for Toxic Substances and Disease Registry (ATSDR) (2007) Toxicological profile for arsenic. U.S. Department of Health and Human Services, Public Health Services, AtlantaGoogle Scholar
  4. Arcega-Cabrera F, Fargher L (2016) Education, fish consumption, well water, chicken coops, and cooking fires: Using biogeochemistry and ethnography to study exposure of children from Yucatan, Mexico to metals and arsenic. Sci Total Environ 568:75–82CrossRefGoogle Scholar
  5. Arcega-Cabrera F, Noreña-Barroso E, Oceguera-Vargas I (2014) Lead from hunting activities and its potential environmental threat to wildlife in a protected wetland in Yucatan, Mexico. Ecotoxicol Environ Saf 100:251–257CrossRefGoogle Scholar
  6. Arcega-Cabrera F, Fargher L, Oceguera-Vargas I, Noreña-Barroso E, Yañez-Estrada L, Alvarado J, González R, Pérez-Herrera N, Quesadas Rojas M, Pérez-Medina S (2017) Water consumption as source of arsenic, chromium, and mercury in children living in rural Yucatan, Mexico: blood and urine levels. Bull Environ Contam Toxicol.  https://doi.org/10.1007/s00128-017-2147-x Google Scholar
  7. ATSDR (2017a) Toxic substances portal: mercury. https://www.atsdr.cdc.gov/substances/index.asp
  8. ATSDR (2017b) Toxic substances portal: chromium. https://www.atsdr.cdc.gov/substances/index.asp
  9. ATSDR (2017c) Toxic substances portal: arsenic. https://www.atsdr.cdc.gov/substances/index.asp
  10. Basu A, Mahata J, Gupta S, Giri AK (2001) Genetic toxicology of a paradoxical human carcinogen, arsenic: a review. Mutat Res 488:171–194CrossRefGoogle Scholar
  11. Battlori-Sampedro E, Febles-Patrón J (2002) El agua subterránea en el desarrollo integral de la península de Yucatán. Av Perspect 21:67–77Google Scholar
  12. Centeno JA, Mullick FG, Martinez L, Page NP, Gibb H, Longfellow D, Thompson C, Ladich ER (2002) Pathology related to chronic arsenic exposure. Environ Health Perspect 110(Suppl. 5):883–886CrossRefGoogle Scholar
  13. Costa M, Klein CB (2006) Toxicity and carcinogenicity of chromium compounds in humans. Crit Rev Toxicol 36:155–163CrossRefGoogle Scholar
  14. Environmental Protection Agency (EPA) (1984) Health assessment document for inorganic arsenic. Environmental Criteria and Assessment Office, CincinnatiGoogle Scholar
  15. Escolero O, Marin LE, Steinich B, Pacheco JA, Molina-Maldonado A, Anzaldo JM (2005) Geochemistry of the hydrogeological reserve of Mérida, Yucatán, Mexico. Geofís Int 44(3): 301–314Google Scholar
  16. Farid S, Baloch MK, Ahmad SA (2012) Water pollution: Major issue in urbana reas. Int J Water Resour Environ Eng 4(3):55–65Google Scholar
  17. Febles-Patrón J, Hoogesteijn A (2008) Análisis del marco legal para la protección del agua subterránea en Mérida, Yucatán. Ing Rev Acad 12:71–79Google Scholar
  18. Gebel TW (2001) Genotoxicity of arsenical compounds. Int J Hyg Environ Health 203:249–262CrossRefGoogle Scholar
  19. Graniel E, Vera I, González L (2004) Dinámica de la interfase salina y calidad del agua en la Costa Nororiental de Yucatán. Ing Rev Acad 8:15–25Google Scholar
  20. Hall M, Chen Y, Ahsan H, Slavkovich V, van Geen A, Parvez F, Graziano J (2006) Blood arsenic as a biomarker of arsenic exposure: results from a prospective study. Toxicology 225:225–233CrossRefGoogle Scholar
  21. Hu Y, Zhang W, Cheng H, Tao S (2017) Public health risk of arsenic species in chicken tissues from live pultry markets of Guangdong province, China. Environ Sci Technol 51:3508–3517.  https://doi.org/10.1021/acs.est.6b06258 CrossRefGoogle Scholar
  22. Instituto Nacional de Estadística y Geografía (INEGI) http://www.inegi.org.mx/yucatan
  23. Kannan GM, Tripathi N, Dube SN, Gupta M, Flora SJ (2001) Toxic effects of arsenic (III) on some hematopoietic and central nervous system variables in rats and guinea pigs. J Toxicol Clin Toxicol 39:675–682CrossRefGoogle Scholar
  24. Kazi TG, Arain MB, Baig JA, Jamai MK, Afridi HI, Jalbani N, Sarfraz RA, Shah AQ, Niaz A (2009) The correlation of arsenic levels in drinking water with the biological samples of skin disorders. Sci Total Environ. 407(3): 1019–1026Google Scholar
  25. Magaña A (2002) Reactor anaerobio horizontal doable (RAH-D) su desarrollo en la FIUADY. Ing Rev Acad 6:61–65Google Scholar
  26. Mortada WI, Sobh MA, El-Defrawy MM, Farahat SE (2002) Reference intervals of cadmium, lead, and mercury in blood, urine, hair, and nails among residents in Mansoura city, Nile delta. Egypt Environ Res 90:104–110CrossRefGoogle Scholar
  27. Nascimento S, Barth A, Göethel G, Baierle M, Charão MF, Brucker N, Moro AM, Bubols GB, Sobreira JS, Sauer E, Rocha R, Gioda A, Dias AC, Salles JF, Garcia SC (2015) Cognitive deficits and ALA-D inhibition in children exposed to multiple metals. Environ Res 136:387–395CrossRefGoogle Scholar
  28. Norma Oficial Mexicana “NOM-127-SSA1-1994” Salud ambiental. Agua para uso y consumo humano. Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización. http://www.conagua.gob.mx
  29. Nriagu JO (1988) A silent epidemic of environmental metal poisoning? Environ Pollut 50:139–161CrossRefGoogle Scholar
  30. Pacheco AJ, Cabrera SA (1997) Ground water contamination by nitrates in the Yucatán peninsula. Mex Hydrogeol J 2:47–53CrossRefGoogle Scholar
  31. Pacheco AJ, Cabrera SA, Marín LE (2000) Bacteriological contamination in the karstic acuifer of Yucatán. Mex Geofís Int 39(3):285–291Google Scholar
  32. Pacheco AJ, Cabrera A, Pérez R (2004) Diagnóstico e la calidad del agua subterránea en los sistemas municipales de abastecimiento en el estado de Yucatán, México. Investig Geogr 59:74–92Google Scholar
  33. Paustenbach DJ, Panko JM, Fredrick MM, Finley BL, Proctor DM (1997) Urinary chromium as a biological marker of environmental exposure: what are the limitations? Regul Toxicol Pharmacol 26:S23-S34CrossRefGoogle Scholar
  34. Sahin B, Temiz F, Ozer G, Yuksel B, Kemal A, Onenli N, Mazman M, Murat G (2012) Chromium levels in healthy and newly diagnosed type 1 diabetic children. Pediatr Int 54:780–785CrossRefGoogle Scholar
  35. Seigneur C, Vijayaraghavan K, Lohman K, Karamchandani P, Scott C (2004) Global source attribution for mercury deposition in the United States. Environ Sci Technol 38(2):555–569CrossRefGoogle Scholar
  36. Steinich B, Velázquez-Oliman G, Marín L, Perry E (1996) Determination of the ground water divide in the karst aquifer of Yucatán, México, combining geochemical and hydrogeological. Geofís Int 35:153–159Google Scholar
  37. Velasco A, Arcega-Cabrera F, Oceguera-Vargas I, Ramírez M, Ortinez A, Umlauf G, Sena F (2016) Global Mercury Observatory System (GMOS): measurements of atmospheric mercury in Celestun, Yucatan, Mexico during 2012. Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-016-6852-5 Google Scholar
  38. Wasserman GA, Liu X, Parvez F, Factor-Litvak P, Ahsan H, Levy D, Kliine J, van Geen A, Mey J, Slavkovich V, Siddique AB, Islam T, Graziano JH (2011) Arsenic and manganese exposure and children’s intellectual function. Neurotoxicology 32:450–457CrossRefGoogle Scholar
  39. WHO (1993) World Health Organization, guidelines for drinking-water quality. World Health Organization, GenevaGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • F. Arcega-Cabrera
    • 1
    • 7
  • L. Fargher
    • 2
  • M. Quesadas-Rojas
    • 1
  • R. Moo-Puc
    • 3
  • I. Oceguera-Vargas
    • 1
  • E. Noreña-Barroso
    • 1
  • L. Yáñez-Estrada
    • 4
  • J. Alvarado
    • 5
  • L. González
    • 5
  • N. Pérez-Herrera
    • 6
  • S. Pérez-Medina
    • 2
  1. 1.Unidad de Química Sisal, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoYucatánMexico
  2. 2.Ecología Humana, CINVESTAV-IPN MéridaYucatánMexico
  3. 3.Unidad de Investigación Médica Yucatán, Unidad Médica de Alta Especialidad Hospital de Especialidades Centro Médico Nacional “Ignacio García Téllez” MéridaInstituto Mexicano del Seguro Social (IMSS)YucatánMexico
  4. 4.Laboratorio de Género, Salud y Ambiente, Facultad de MedicinaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  5. 5.Facultad de MedicinaUniversidad Autónoma de YucatanYucatánMexico
  6. 6.Unidad Interinstitucional de Investigación Clínica y Epidemiológica, Facultad de MedicinaUniversidad Autónoma de YucatánYucatánMexico
  7. 7.Centro de Investigación y de Estudios Avanzados del IPN-MéridaYucatánMexico

Personalised recommendations